climpred.metrics._rank_histogram
climpred.metrics._rank_histogram#
- climpred.metrics._rank_histogram(forecast: xarray.Dataset, verif: xarray.Dataset, dim: Optional[Union[str, List[str]]] = None, **metric_kwargs: Any) xarray.Dataset [source]#
Rank histogram or Talagrand diagram.
- Parameters
forecast – Raw forecasts with
member
dimension.verif – Verification data without
member
dim.dim – Dimensions to aggregate. Requires to contain
member
and at least one additional dimension.
Notes
flat
perfect
slope
biased
u-shaped
overconfident/underdisperive
dome-shaped
underconfident/overdisperive
See also
Example
>>> HindcastEnsemble.verify( ... metric="rank_histogram", ... comparison="m2o", ... dim=["member", "init"], ... alignment="same_verifs", ... ) <xarray.Dataset> Dimensions: (rank: 11, lead: 10) Coordinates: * rank (rank) float64 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 skill <U11 'initialized' Data variables: SST (lead, rank) int64 12 3 2 1 1 3 1 2 6 5 16 ... 0 1 0 0 3 0 2 6 6 34 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: rank_histogram comparison: m2o dim: ['member', 'init'] reference: []
>>> PerfectModelEnsemble.verify( ... metric="rank_histogram", comparison="m2c", dim=["member", "init"] ... ) <xarray.Dataset> Dimensions: (lead: 20, rank: 10) Coordinates: * lead (lead) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * rank (rank) float64 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Data variables: tos (lead, rank) int64 1 4 2 1 2 1 0 0 0 1 2 ... 0 2 0 1 2 1 0 3 1 2 0 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: PerfectModelEnsemble.verify() number_of_initializations: 12 number_of_members: 10 metric: rank_histogram comparison: m2c dim: ['member', 'init'] reference: []