climpred.metrics._msess_murphy
climpred.metrics._msess_murphy#
- climpred.metrics._msess_murphy(forecast: xarray.Dataset, verif: xarray.Dataset, dim: Optional[Union[str, List[str]]] = None, **metric_kwargs: Any) xarray.Dataset [source]#
Murphy’s Mean Square Error Skill Score (MSESS).
where represents the Pearson product-moment correlation coefficient between the forecast and verification data and represents the standard deviation of the verification data over the experimental period. See
conditional_bias
andunconditional_bias
for their respective formulations.- Parameters
forecast – Forecast.
verif – Verification data.
dim – Dimension(s) to perform metric over.
metric_kwargs – see
xskillscore.pearson_r()
,mean()
andstd()
Notes
minimum
-∞
maximum
1.0
perfect
1.0
orientation
positive
References
Example
>>> HindcastEnsemble = HindcastEnsemble.remove_bias(alignment="same_verifs") >>> HindcastEnsemble.verify( ... metric="msess_murphy", ... comparison="e2o", ... dim="init", ... alignment="same_verifs", ... ) <xarray.Dataset> Dimensions: (lead: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 skill <U11 'initialized' Data variables: SST (lead) float64 0.8306 0.8351 0.8295 0.8532 ... 0.8471 0.813 0.8097 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: msess_murphy comparison: e2o dim: init reference: []