climpred.metrics._pearson_r
climpred.metrics._pearson_r#
- climpred.metrics._pearson_r(forecast: xarray.Dataset, verif: xarray.Dataset, dim: Optional[Union[str, List[str]]] = None, **metric_kwargs: Any) xarray.Dataset [source]#
Pearson product-moment correlation coefficient.
A measure of the linear association between the forecast and verification data that is independent of the mean and variance of the individual distributions. This is also known as the Anomaly Correlation Coefficient (ACC) when correlating anomalies.
where and represent the standard deviation of the forecast and verification data over the experimental period, respectively.
Note
Use metric
_pearson_r_p_value()
or_pearson_r_eff_p_value()
to get the corresponding p value.- Parameters
forecast – Forecast.
verif – Verification data.
dim – Dimension(s) to perform metric over.
metric_kwargs – see
xskillscore.pearson_r()
Notes
minimum
-1.0
maximum
1.0
perfect
1.0
orientation
positive
See also
Example
>>> HindcastEnsemble.verify( ... metric="pearson_r", ... comparison="e2o", ... alignment="same_verifs", ... dim=["init"], ... ) <xarray.Dataset> Dimensions: (lead: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 skill <U11 'initialized' Data variables: SST (lead) float64 0.9272 0.9145 0.9127 0.9319 ... 0.9315 0.9185 0.9112 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: pearson_r comparison: e2o dim: init reference: []