Source code for climpred.bootstrap

import warnings

import dask
import numpy as np
import xarray as xr

from climpred.constants import CLIMPRED_DIMS, CONCAT_KWARGS, PM_CALENDAR_STR

from .checks import (
    has_dims,
    has_valid_lead_units,
    warn_if_chunking_would_increase_performance,
)
from .comparisons import (
    ALL_COMPARISONS,
    COMPARISON_ALIASES,
    HINDCAST_COMPARISONS,
    __m2o,
)
from .exceptions import KeywordError
from .metrics import ALL_METRICS, METRIC_ALIASES
from .prediction import compute_hindcast, compute_perfect_model
from .reference import compute_climatology, compute_persistence
from .stats import dpp

try:
    from .stats import varweighted_mean_period
except ImportError:
    varweighted_mean_period = None
from .utils import (
    _transpose_and_rechunk_to,
    assign_attrs,
    convert_time_index,
    find_start_dates_for_given_init,
    get_comparison_class,
    get_lead_cftime_shift_args,
    get_metric_class,
    lead_units_equal_control_time_stride,
    rechunk_to_single_chunk_if_more_than_one_chunk_along_dim,
    shift_cftime_singular,
)


def _resample(hind, resample_dim):
    """Resample with replacement in dimension ``resample_dim``.

    Args:
        hind (xr.object): input xr.object to be resampled.
        resample_dim (str): dimension to resample along.

    Returns:
        xr.object: resampled along ``resample_dim``.

    """
    to_be_resampled = hind[resample_dim].values
    smp = np.random.choice(to_be_resampled, len(to_be_resampled))
    smp_hind = hind.sel({resample_dim: smp})
    # ignore because then inits should keep their labels
    if resample_dim != "init":
        smp_hind[resample_dim] = hind[resample_dim].values
    return smp_hind


def _resample_iterations(init, iterations, dim="member", dim_max=None, replace=True):
    """Resample over ``dim`` by index ``iterations`` times.

    .. note::
        This gives the same result as `_resample_iterations_idx`. When using dask, the
        number of tasks in `_resample_iterations` will scale with iterations but
        constant chunksize, whereas the tasks in `_resample_iterations_idx` will stay
        constant with increasing chunksize.

    Args:
        init (xr.DataArray, xr.Dataset): Initialized prediction ensemble.
        iterations (int): Number of bootstrapping iterations.
        dim (str): Dimension name to bootstrap over. Defaults to ``'member'``.
        dim_max (int): Number of items to select in `dim`.
        replace (bool): Bootstrapping with or without replacement. Defaults to ``True``.

    Returns:
        xr.DataArray, xr.Dataset: Bootstrapped data with additional dim ```iteration```

    """
    if dim_max is not None and dim_max <= init[dim].size:
        # select only dim_max items
        select_dim_items = dim_max
        new_dim = init[dim].isel({dim: slice(None, dim_max)})
    else:
        select_dim_items = init[dim].size
        new_dim = init[dim]

    if replace:
        idx = np.random.randint(0, init[dim].size, (iterations, select_dim_items))
    elif not replace:
        # create 2d np.arange()
        idx = np.linspace(
            (np.arange(select_dim_items)),
            (np.arange(select_dim_items)),
            iterations,
            dtype="int",
        )
        # shuffle each line
        for ndx in np.arange(iterations):
            np.random.shuffle(idx[ndx])
    idx_da = xr.DataArray(
        idx,
        dims=("iteration", dim),
        coords=({"iteration": range(iterations), dim: new_dim}),
    )
    init_smp = []
    for i in np.arange(iterations):
        idx = idx_da.sel(iteration=i).data
        init_smp2 = init.isel({dim: idx}).assign_coords({dim: new_dim})
        init_smp.append(init_smp2)
    init_smp = xr.concat(init_smp, dim="iteration", **CONCAT_KWARGS)
    init_smp["iteration"] = np.arange(1, 1 + iterations)
    return init_smp


def _resample_iterations_idx(
    init, iterations, dim="member", replace=True, chunk=True, dim_max=None
):
    """Resample over ``dim`` by index ``iterations`` times.

    .. note::
        This is a much faster way to bootstrap than resampling each iteration
        individually and applying the function to it. However, this will create a
        DataArray with dimension ``iteration`` of size ``iterations``. It is probably
        best to do this out-of-memory with ``dask`` if you are doing a large number
        of iterations or using spatial output (i.e., not time series data).

    Args:
        init (xr.DataArray, xr.Dataset): Initialized prediction ensemble.
        iterations (int): Number of bootstrapping iterations.
        dim (str): Dimension name to bootstrap over. Defaults to ``'member'``.
        replace (bool): Bootstrapping with or without replacement. Defaults to ``True``.
        chunk: (bool): Auto-chunk along chunking_dims to get optimal blocksize
        dim_max (int): Number of indices from `dim` to return. Not implemented.

    Returns:
        xr.DataArray, xr.Dataset: Bootstrapped data with additional dim ```iteration```

    """
    if dask.is_dask_collection(init):
        init = init.chunk({"lead": -1, "member": -1})
        init = init.copy(deep=True)

    def select_bootstrap_indices_ufunc(x, idx):
        """Selects multi-level indices ``idx`` from xarray object ``x`` for all
        iterations."""
        # `apply_ufunc` sometimes adds a singleton dimension on the end, so we squeeze
        # it out here. This leverages multi-level indexing from numpy, so we can
        # select a different set of, e.g., ensemble members for each iteration and
        # construct one large DataArray with ``iterations`` as a dimension.
        return np.moveaxis(x.squeeze()[idx.squeeze().transpose()], 0, -1)

    if dask.is_dask_collection(init):
        if chunk:
            chunking_dims = [d for d in init.dims if d not in CLIMPRED_DIMS]
            init = _chunk_before_resample_iterations_idx(
                init, iterations, chunking_dims
            )

    # resample with or without replacement
    if replace:
        idx = np.random.randint(0, init[dim].size, (iterations, init[dim].size))
    elif not replace:
        # create 2d np.arange()
        idx = np.linspace(
            (np.arange(init[dim].size)),
            (np.arange(init[dim].size)),
            iterations,
            dtype="int",
        )
        # shuffle each line
        for ndx in np.arange(iterations):
            np.random.shuffle(idx[ndx])
    idx_da = xr.DataArray(
        idx,
        dims=("iteration", dim),
        coords=({"iteration": range(iterations), dim: init[dim]}),
    )
    transpose_kwargs = (
        {"transpose_coords": False} if isinstance(init, xr.DataArray) else {}
    )
    return xr.apply_ufunc(
        select_bootstrap_indices_ufunc,
        init.transpose(dim, ..., **transpose_kwargs),
        idx_da,
        dask="parallelized",
        output_dtypes=[float],
    )


def _distribution_to_ci(ds, ci_low, ci_high, dim="iteration"):
    """Get confidence intervals from bootstrapped distribution.

    Needed for bootstrapping confidence intervals and p_values of a metric.

    Args:
        ds (xarray object): distribution.
        ci_low (float): low confidence interval.
        ci_high (float): high confidence interval.
        dim (str): dimension to apply xr.quantile to. Default: 'iteration'

    Returns:
        uninit_hind (xarray object): uninitialize hindcast with hind.coords.
    """
    ds = rechunk_to_single_chunk_if_more_than_one_chunk_along_dim(ds, dim)
    if isinstance(ds, xr.Dataset):
        for v in ds.data_vars:
            if np.issubdtype(ds[v].dtype, np.bool_):
                ds[v] = ds[v].astype(np.float_)  # fails on py>36 if boolean dtype
    else:
        if np.issubdtype(ds.dtype, np.bool_):
            ds = ds.astype(np.float_)  # fails on py>36 if boolean dtype
    return ds.quantile(q=[ci_low, ci_high], dim=dim, skipna=False)


def _pvalue_from_distributions(ref_skill, init_skill, metric=None):
    """Get probability that skill of a reference forecast (e.g., persistence or
    uninitialized skill) is larger than initialized skill.

    Needed for bootstrapping confidence intervals and p_values of a metric in
    the hindcast framework. Checks whether a simple forecast like persistence, climatology
    or uninitialized performs better than initialized forecast. Need to keep in
    mind the orientation of metric (whether larger values are better or worse
    than smaller ones.)

    Args:
        ref_skill (xarray object): persistence or uninitialized skill.
        init_skill (xarray object): initialized skill.
        metric (Metric): metric class Metric

    Returns:
        pv (xarray object): probability that simple forecast performs better
                            than initialized forecast.
    """
    pv = ((ref_skill - init_skill) > 0).mean("iteration")
    if not metric.positive:
        pv = 1 - pv
    return pv


[docs]def bootstrap_uninitialized_ensemble(hind, hist): """Resample uninitialized hindcast from historical members. Note: Needed for bootstrapping confidence intervals and p_values of a metric in the hindcast framework. Takes hind.lead.size timesteps from historical at same forcing and rearranges them into ensemble and member dimensions. Args: hind (xarray object): hindcast. hist (xarray object): historical uninitialized. Returns: uninit_hind (xarray object): uninitialize hindcast with hind.coords. """ has_dims(hist, "member", "historical ensemble") has_dims(hind, "member", "initialized hindcast ensemble") # Put this after `convert_time_index` since it assigns 'years' attribute if the # `init` dimension is a `float` or `int`. has_valid_lead_units(hind) # find range for bootstrapping first_init = max(hist.time.min(), hind["init"].min()) n, freq = get_lead_cftime_shift_args(hind.lead.attrs["units"], hind.lead.size) hist_last = shift_cftime_singular(hist.time.max(), -1 * n, freq) last_init = min(hist_last, hind["init"].max()) hind = hind.sel(init=slice(first_init, last_init)) uninit_hind = [] for init in hind.init.values: # take uninitialized members from hist at init forcing # (Goddard et al. allows 5 year forcing range here) uninit_at_one_init_year = hist.sel( time=slice( shift_cftime_singular(init, 1, freq), shift_cftime_singular(init, n, freq), ), ).rename({"time": "lead"}) uninit_at_one_init_year["lead"] = np.arange( 1, 1 + uninit_at_one_init_year["lead"].size ) uninit_hind.append(uninit_at_one_init_year) uninit_hind = xr.concat(uninit_hind, "init") uninit_hind["init"] = hind["init"].values uninit_hind.lead.attrs["units"] = hind.lead.attrs["units"] uninit_hind["member"] = hist["member"].values return ( _transpose_and_rechunk_to( uninit_hind, hind.isel(member=[0] * uninit_hind.member.size) ) if dask.is_dask_collection(uninit_hind) else uninit_hind )
[docs]def bootstrap_uninit_pm_ensemble_from_control_cftime(init_pm, control): """Create a pseudo-ensemble from control run. Bootstrap random numbers for years to construct an uninitialized ensemble from. This assumes a continous control simulation without gaps. Note: Needed for block bootstrapping a metric in perfect-model framework. Takes random segments of length ``block_length`` from control based on ``dayofyear`` (and therefore assumes a constant climate control simulation) and rearranges them into ensemble and member dimensions. Args: init_pm (xarray object): initialized ensemble simulation. control (xarray object): control simulation. Returns: uninit_pm (xarray object): uninitialized ensemble generated from control run. """ lead_units_equal_control_time_stride(init_pm, control) # short cut if annual leads if init_pm.lead.attrs["units"] == "years": return _bootstrap_by_stacking(init_pm, control) block_length = init_pm.lead.size freq = get_lead_cftime_shift_args(init_pm.lead.attrs["units"], block_length)[1] nmember = init_pm.member.size # start and end years possible to resample the actual uninitialized ensembles from c_start_year = control.time.min().dt.year.astype("int") # dont resample from years that control wont have timesteps for all leads c_end_year = ( shift_cftime_singular(control.time.max(), -block_length, freq).dt.year.astype( "int" ) - 1 ) def sel_time(start_year_int, suitable_start_dates): """Select time segments from control from ``suitable_start_dates`` based on year ``start_year_int``.""" start_time = suitable_start_dates.time.sel(time=str(start_year_int)) end_time = shift_cftime_singular(start_time, block_length - 1, freq) new = control.sel(time=slice(*start_time, *end_time)) new["time"] = init_pm.lead.values return new def create_pseudo_members(init): """For every initialization take a different set of start years.""" startlist = np.random.randint(c_start_year, c_end_year, nmember) suitable_start_dates = find_start_dates_for_given_init(control, init) return xr.concat( (sel_time(start, suitable_start_dates) for start in startlist), dim="member", **CONCAT_KWARGS, ) uninit = xr.concat( (create_pseudo_members(init) for init in init_pm.init), dim="init", **CONCAT_KWARGS, ).rename({"time": "lead"}) uninit["member"] = init_pm.member.values uninit["lead"] = init_pm.lead # chunk to same dims transpose_kwargs = ( {"transpose_coords": False} if isinstance(init_pm, xr.DataArray) else {} ) uninit = uninit.transpose(*init_pm.dims, **transpose_kwargs) return ( _transpose_and_rechunk_to(uninit, init_pm) if dask.is_dask_collection(uninit) else uninit )
def _bootstrap_by_stacking(init_pm, control): """Bootstrap member, lead, init from control by reshaping. Fast track of function `bootstrap_uninit_pm_ensemble_from_control_cftime` when lead units is 'years'.""" assert type(init_pm) == type(control) lead_unit = init_pm.lead.attrs["units"] if isinstance(init_pm, xr.Dataset): init_pm = init_pm.to_array() init_was_dataset = True else: init_was_dataset = False if isinstance(control, xr.Dataset): control = control.to_array() init_size = init_pm.init.size * init_pm.member.size * init_pm.lead.size # select random start points new_time = np.random.randint( 0, control.time.size - init_pm.lead.size, init_size // (init_pm.lead.size) ) new_time = np.array( [np.arange(s, s + init_pm.lead.size) for s in new_time] ).flatten()[:init_size] larger = control.isel(time=new_time) fake_init = init_pm.stack(time=tuple(d for d in init_pm.dims if d in CLIMPRED_DIMS)) # exchange values transpose_kwargs = ( {"transpose_coords": False} if isinstance(init_pm, xr.DataArray) else {} ) larger = larger.transpose(*fake_init.dims, **transpose_kwargs) fake_init.data = larger.data fake_uninit = fake_init.unstack() if init_was_dataset: fake_uninit = fake_uninit.to_dataset(dim="variable") fake_uninit["lead"] = init_pm["lead"] fake_uninit.lead.attrs["units"] = lead_unit return fake_uninit def _bootstrap_hindcast_over_init_dim( hind, hist, verif, dim, reference, resample_dim, iterations, metric, comparison, compute, resample_uninit, **metric_kwargs, ): """Bootstrap hindcast skill over the ``init`` dimension. When bootstrapping over the ``member`` dimension, an additional dimension ``iteration`` can be added and skill can be computing over that entire dimension in parallel, since all members are being aligned the same way. However, to our knowledge, when bootstrapping over the ``init`` dimension, one must evaluate each iteration independently. I.e., in a looped fashion, since alignment of initializations and target dates is unique to each iteration. See ``bootstrap_compute`` for explanation of inputs. """ pers_skill = [] bootstrapped_init_skill = [] bootstrapped_uninit_skill = [] for i in range(iterations): # resample with replacement smp_hind = _resample(hind, resample_dim) # compute init skill init_skill = compute( smp_hind, verif, metric=metric, comparison=comparison, add_attrs=False, dim=dim, **metric_kwargs, ) # reset inits when probabilistic, otherwise tests fail if ( resample_dim == "init" and metric.probabilistic and "init" in init_skill.coords ): init_skill["init"] = hind.init.values bootstrapped_init_skill.append(init_skill) if "uninitialized" in reference: # generate uninitialized ensemble from hist uninit_hind = resample_uninit(hind, hist) # compute uninit skill bootstrapped_uninit_skill.append( compute( uninit_hind, verif, metric=metric, comparison=comparison, dim=dim, add_attrs=False, **metric_kwargs, ) ) if "persistence" in reference: pers_skill.append( compute_persistence( smp_hind, verif, metric=metric, dim=dim, add_attrs=False, **metric_kwargs, ) ) bootstrapped_init_skill = xr.concat( bootstrapped_init_skill, dim="iteration", **CONCAT_KWARGS ) if "uninitialized" in reference: bootstrapped_uninit_skill = xr.concat( bootstrapped_uninit_skill, dim="iteration", **CONCAT_KWARGS ) else: bootstrapped_uninit_skill = None if "persistence" in reference: bootstrapped_pers_skill = xr.concat( pers_skill, dim="iteration", **CONCAT_KWARGS ) else: bootstrapped_pers_skill = None return (bootstrapped_init_skill, bootstrapped_uninit_skill, bootstrapped_pers_skill) def _get_resample_func(ds): """Decide for resample function based on input `ds`. Returns: callable: `_resample_iterations`: if big and chunked `ds` `_resample_iterations_idx`: else (if small and eager `ds`) """ resample_func = ( _resample_iterations if ( dask.is_dask_collection(ds) and len(ds.dims) > 3 # > 2MB and ds.nbytes > 2000000 ) else _resample_iterations_idx ) return resample_func def _maybe_auto_chunk(ds, dims): """Auto-chunk on dimension `dims`. Args: ds (xr.object): input data. dims (list of str or str): Dimensions to auto-chunk in. Returns: xr.object: auto-chunked along `dims` """ if dask.is_dask_collection(ds) and dims is not []: if isinstance(dims, str): dims = [dims] chunks = [d for d in dims if d in ds.dims] chunks = {key: "auto" for key in chunks} ds = ds.chunk(chunks) return ds def _chunk_before_resample_iterations_idx( ds, iterations, chunking_dims, optimal_blocksize=100000000 ): """Chunk ds so small that after _resample_iteration_idx chunks have optimal size `optimal_blocksize`. Args: ds (xr.obejct): input data`. iterations (int): number of bootstrap iterations in `_resample_iterations_idx`. chunking_dims (list of str or str): Dimension(s) to chunking in. optimal_blocksize (int): dask blocksize to aim at in bytes. Defaults to 100000000. Returns: xr.object: chunked to have blocksize: optimal_blocksize/iterations. """ if isinstance(chunking_dims, str): chunking_dims = [chunking_dims] # size of CLIMPRED_DIMS climpred_dim_chunksize = 8 * np.product( np.array([ds[d].size for d in CLIMPRED_DIMS if d in ds.dims]) ) # remaining blocksize for remaining dims considering iteration spatial_dim_blocksize = optimal_blocksize / (climpred_dim_chunksize * iterations) # size of remaining dims chunking_dims_size = np.product( np.array([ds[d].size for d in ds.dims if d not in CLIMPRED_DIMS]) ) # ds.lat.size*ds.lon.size # chunks needed to get to optimal blocksize chunks_needed = chunking_dims_size / spatial_dim_blocksize # get size clon, clat for spatial chunks cdim = [1 for i in chunking_dims] nchunks = np.product(cdim) stepsize = 1 counter = 0 while nchunks < chunks_needed: for i, d in enumerate(chunking_dims): c = cdim[i] if c <= ds[d].size: c = c + stepsize cdim[i] = c nchunks = np.product(cdim) counter += 1 if counter == 100: break # convert number of chunks to chunksize chunks = dict() for i, d in enumerate(chunking_dims): chunksize = ds[d].size // cdim[i] if chunksize < 1: chunksize = 1 chunks[d] = chunksize ds = ds.chunk(chunks) return ds
[docs]def bootstrap_compute( hind, verif, hist=None, alignment="same_verifs", metric="pearson_r", comparison="m2e", dim="init", reference=None, resample_dim="member", sig=95, iterations=500, pers_sig=None, compute=compute_hindcast, resample_uninit=bootstrap_uninitialized_ensemble, **metric_kwargs, ): """Bootstrap compute with replacement. Args: hind (xr.Dataset): prediction ensemble. verif (xr.Dataset): Verification data. hist (xr.Dataset): historical/uninitialized simulation. metric (str): `metric`. Defaults to 'pearson_r'. comparison (str): `comparison`. Defaults to 'm2e'. dim (str or list): dimension(s) to apply metric over. default: 'init'. reference (str, list of str): Type of reference forecasts with which to verify. One or more of ['persistence', 'uninitialized']. If None or empty, returns no p value. resample_dim (str): dimension to resample from. default: 'member':: - 'member': select a different set of members from hind - 'init': select a different set of initializations from hind sig (int): Significance level for uninitialized and initialized skill. Defaults to 95. pers_sig (int): Significance level for persistence skill confidence levels. Defaults to sig. iterations (int): number of resampling iterations (bootstrap with replacement). Defaults to 500. compute (func): function to compute skill. Choose from [:py:func:`climpred.prediction.compute_perfect_model`, :py:func:`climpred.prediction.compute_hindcast`]. resample_uninit (func): function to create an uninitialized ensemble from a control simulation or uninitialized large ensemble. Choose from: [:py:func:`bootstrap_uninitialized_ensemble`, :py:func:`bootstrap_uninit_pm_ensemble_from_control`]. ** metric_kwargs (dict): additional keywords to be passed to metric (see the arguments required for a given metric in :ref:`Metrics`). Returns: results: (xr.Dataset): bootstrapped results for the three different skills: - `initialized` for the initialized hindcast `hind` and describes skill due to initialization and external forcing - `uninitialized` for the uninitialized/historical and approximates skill from external forcing - `persistence` for the persistence forecast computed by `compute_persistence` the different results: - `verify skill`: skill values - `p`: p value - `low_ci` and `high_ci`: high and low ends of confidence intervals based on significance threshold `sig` Reference: * Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013): 245–72. https://doi.org/10/f4jjvf. See also: * climpred.bootstrap.bootstrap_hindcast * climpred.bootstrap.bootstrap_perfect_model """ warn_if_chunking_would_increase_performance(hind, crit_size_in_MB=5) if pers_sig is None: pers_sig = sig if isinstance(dim, str): dim = [dim] if isinstance(reference, str): reference = [reference] if reference is None: reference = [] p = (100 - sig) / 100 ci_low = p / 2 ci_high = 1 - p / 2 p_pers = (100 - pers_sig) / 100 ci_low_pers = p_pers / 2 ci_high_pers = 1 - p_pers / 2 # get metric/comparison function name, not the alias metric = METRIC_ALIASES.get(metric, metric) comparison = COMPARISON_ALIASES.get(comparison, comparison) # get class Metric(metric) metric = get_metric_class(metric, ALL_METRICS) # get comparison function comparison = get_comparison_class(comparison, ALL_COMPARISONS) # Perfect Model requires `same_inits` setup isHindcast = True if comparison.name in HINDCAST_COMPARISONS else False reference_alignment = alignment if isHindcast else "same_inits" chunking_dims = [d for d in hind.dims if d not in CLIMPRED_DIMS] # carry alignment for compute_reference separately metric_kwargs_reference = metric_kwargs.copy() metric_kwargs_reference["alignment"] = reference_alignment # carry alignment in metric_kwargs if isHindcast: metric_kwargs["alignment"] = alignment if hist is None: # PM path, use verif = control hist = verif # slower path for hindcast and resample_dim init if resample_dim == "init" and isHindcast: warnings.warn("resample_dim=`init` will be slower than resample_dim=`member`.") ( bootstrapped_init_skill, bootstrapped_uninit_skill, bootstrapped_pers_skill, ) = _bootstrap_hindcast_over_init_dim( hind, hist, verif, dim, reference, resample_dim, iterations, metric, comparison, compute, resample_uninit, **metric_kwargs, ) else: # faster: first _resample_iterations_idx, then compute skill resample_func = _get_resample_func(hind) if not isHindcast: if "uninitialized" in reference: # create more members than needed in PM to make the uninitialized # distribution more robust members_to_sample_from = 50 repeat = members_to_sample_from // hind.member.size + 1 uninit_hind = xr.concat( [resample_uninit(hind, hist) for i in range(repeat)], dim="member", **CONCAT_KWARGS, ) uninit_hind["member"] = np.arange(1, 1 + uninit_hind.member.size) if dask.is_dask_collection(uninit_hind): # too minimize tasks: ensure uninit_hind get pre-computed # alternativly .chunk({'member':-1}) uninit_hind = uninit_hind.compute().chunk() # resample uninit always over member and select only hind.member.size bootstrapped_uninit = resample_func( uninit_hind, iterations, "member", replace=False, dim_max=hind["member"].size, ) bootstrapped_uninit["lead"] = hind["lead"] # effectively only when _resample_iteration_idx which doesnt use dim_max bootstrapped_uninit = bootstrapped_uninit.isel( member=slice(None, hind.member.size) ) bootstrapped_uninit["member"] = np.arange( 1, 1 + bootstrapped_uninit.member.size ) if dask.is_dask_collection(bootstrapped_uninit): bootstrapped_uninit = bootstrapped_uninit.chunk({"member": -1}) bootstrapped_uninit = _maybe_auto_chunk( bootstrapped_uninit, ["iteration"] + chunking_dims ) else: # hindcast if "uninitialized" in reference: uninit_hind = resample_uninit(hind, hist) if dask.is_dask_collection(uninit_hind): # too minimize tasks: ensure uninit_hind get pre-computed # maybe not needed uninit_hind = uninit_hind.compute().chunk() bootstrapped_uninit = resample_func( uninit_hind, iterations, resample_dim ) bootstrapped_uninit = bootstrapped_uninit.isel( member=slice(None, hind.member.size) ) bootstrapped_uninit["lead"] = hind["lead"] if dask.is_dask_collection(bootstrapped_uninit): bootstrapped_uninit = _maybe_auto_chunk( bootstrapped_uninit.chunk({"lead": 1}), ["iteration"] + chunking_dims, ) if "uninitialized" in reference: bootstrapped_uninit_skill = compute( bootstrapped_uninit, verif, metric=metric, comparison="m2o" if isHindcast else comparison, dim=dim, add_attrs=False, **metric_kwargs, ) # take mean if 'm2o' comparison forced before if isHindcast and comparison != __m2o: bootstrapped_uninit_skill = bootstrapped_uninit_skill.mean("member") with xr.set_options(keep_attrs=True): bootstrapped_hind = resample_func(hind, iterations, resample_dim) if dask.is_dask_collection(bootstrapped_hind): bootstrapped_hind = bootstrapped_hind.chunk({"member": -1}) bootstrapped_init_skill = compute( bootstrapped_hind, verif, metric=metric, comparison=comparison, add_attrs=False, dim=dim, **metric_kwargs, ) if "persistence" in reference: pers_skill = compute_persistence( hind, verif, metric=metric, dim=dim, **metric_kwargs_reference, ) # bootstrap pers if resample_dim == "init": bootstrapped_pers_skill = compute_persistence( bootstrapped_hind, verif, metric=metric, **metric_kwargs_reference, ) else: # member no need to calculate all again bootstrapped_pers_skill, _ = xr.broadcast( pers_skill, bootstrapped_init_skill ) # calc mean skill without any resampling init_skill = compute( hind, verif, metric=metric, comparison=comparison, dim=dim, **metric_kwargs, ) if "uninitialized" in reference: # uninit skill as mean resampled uninit skill unin_skill = bootstrapped_uninit_skill.mean("iteration") # noqa: F841 if "persistence" in reference: pers_skill = compute_persistence( hind, verif, metric=metric, dim=dim, **metric_kwargs_reference ) if "climatology" in reference: clim_skill = compute_climatology( hind, verif, metric=metric, dim=dim, comparison=comparison, **metric_kwargs ) bootstrapped_clim_skill, _ = xr.broadcast(clim_skill, bootstrapped_init_skill) # get confidence intervals CI init_ci = _distribution_to_ci(bootstrapped_init_skill, ci_low, ci_high) if "uninitialized" in reference: unin_ci = _distribution_to_ci( # noqa: F841 bootstrapped_uninit_skill, ci_low, ci_high ) if "climatology" in reference: clim_ci = _distribution_to_ci( # noqa: F841 bootstrapped_clim_skill, ci_low, ci_high ) if "persistence" in reference: pers_ci = _distribution_to_ci( # noqa: F841 bootstrapped_pers_skill, ci_low_pers, ci_high_pers ) # pvalue whether uninit or pers better than init forecast if "uninitialized" in reference: p_unin_over_init = _pvalue_from_distributions( # noqa: F841 bootstrapped_uninit_skill, bootstrapped_init_skill, metric=metric ) if "climatology" in reference: p_clim_over_init = _pvalue_from_distributions( # noqa: F841 bootstrapped_clim_skill, bootstrapped_init_skill, metric=metric ) if "persistence" in reference: p_pers_over_init = _pvalue_from_distributions( # noqa: F841 bootstrapped_pers_skill, bootstrapped_init_skill, metric=metric ) # gather return # p defined as probability that reference better than # initialized, therefore not defined for initialized skill # itself results = xr.concat( [ init_skill, init_skill.where(init_skill == -999), init_ci.isel(quantile=0, drop=True), init_ci.isel(quantile=1, drop=True), ], dim="results", coords="minimal", ).assign_coords( results=("results", ["verify skill", "p", "low_ci", "high_ci"]), skill="initialized", ) if reference != []: for r in reference: ref_skill = eval(f"{r[:4]}_skill") ref_p = eval(f"p_{r[:4]}_over_init") ref_ci_low = eval(f"{r[:4]}_ci").isel(quantile=0, drop=True) ref_ci_high = eval(f"{r[:4]}_ci").isel(quantile=1, drop=True) ref_results = xr.concat( [ref_skill, ref_p, ref_ci_low, ref_ci_high], dim="results", **CONCAT_KWARGS, ).assign_coords( skill=r, results=("results", ["verify skill", "p", "low_ci", "high_ci"]) ) if "member" in ref_results.dims: if not ref_results["member"].identical(results["member"]): ref_results["member"] = results[ "member" ] # fixes m2c different member names in reference forecasts results = xr.concat([results, ref_results], dim="skill", **CONCAT_KWARGS) results = results.assign_coords(skill=["initialized"] + reference).squeeze() else: results = results.drop_sel(results="p") results = results.squeeze() # Attach climpred compute information to skill # results.results metadata_dict = { "confidence_interval_levels": f"{ci_high}-{ci_low}", "bootstrap_iterations": iterations, } if reference is not None: metadata_dict[ "p" ] = "probability that reference performs better than initialized" metadata_dict.update(metric_kwargs) results = assign_attrs( results, hind, alignment=alignment, metric=metric, comparison=comparison, dim=dim, metadata_dict=metadata_dict, ) # Ensure that the lead units get carried along for the calculation. The attribute # tends to get dropped along the way due to ``xarray`` functionality. results["lead"] = hind["lead"] if "units" in hind["lead"].attrs and "units" not in results["lead"].attrs: results["lead"].attrs["units"] = hind["lead"].attrs["units"] return results
[docs]def bootstrap_hindcast( hind, hist, verif, alignment="same_verifs", metric="pearson_r", comparison="e2o", dim="init", reference=None, resample_dim="member", sig=95, iterations=500, pers_sig=None, **metric_kwargs, ): """Bootstrap compute with replacement. Wrapper of py:func:`bootstrap_compute` for hindcasts. Args: hind (xr.Dataset): prediction ensemble. verif (xr.Dataset): Verification data. hist (xr.Dataset): historical/uninitialized simulation. metric (str): `metric`. Defaults to 'pearson_r'. comparison (str): `comparison`. Defaults to 'e2o'. dim (str): dimension to apply metric over. default: 'init'. reference (str, list of str): Type of reference forecasts with which to verify. One or more of ['persistence', 'uninitialized']. If None or empty, returns no p value. resample_dim (str or list): dimension to resample from. default: 'member'. - 'member': select a different set of members from hind - 'init': select a different set of initializations from hind sig (int): Significance level for uninitialized and initialized skill. Defaults to 95. pers_sig (int): Significance level for persistence skill confidence levels. Defaults to sig. iterations (int): number of resampling iterations (bootstrap with replacement). Defaults to 500. ** metric_kwargs (dict): additional keywords to be passed to metric (see the arguments required for a given metric in :ref:`Metrics`). Returns: results: (xr.Dataset): bootstrapped results for the three different kinds of predictions: - `initialized` for the initialized hindcast `hind` and describes skill due to initialization and external forcing - `uninitialized` for the uninitialized/historical and approximates skill from external forcing - `persistence` for the persistence forecast computed by `compute_persistence` the different results: - `verify skill`: skill values - `p`: p value - `low_ci` and `high_ci`: high and low ends of confidence intervals based on significance threshold `sig` Reference: * Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013): 245–72. https://doi.org/10/f4jjvf. See also: * climpred.bootstrap.bootstrap_compute * climpred.prediction.compute_hindcast """ # Check that init is int, cftime, or datetime; convert ints or datetime to cftime. hind = convert_time_index(hind, "init", "hind[init]") if isinstance(hist, xr.Dataset): hist = convert_time_index(hist, "time", "uninitialized[time]") else: hist = False verif = convert_time_index(verif, "time", "verif[time]") # Put this after `convert_time_index` since it assigns 'years' attribute if the # `init` dimension is a `float` or `int`. has_valid_lead_units(hind) if ("same_verif" in alignment) & (resample_dim == "init"): raise KeywordError( "Cannot have both alignment='same_verifs' and " "resample_dim='init'. Change `resample_dim` to 'member' to keep " "common verification alignment or `alignment` to 'same_inits' to " "resample over initializations." ) # Kludge for now. Since we're computing persistence here we need to ensure that # all products have a union in their time axis. if hist not in [None, False]: times = np.sort( list(set(hind.init.data) & set(hist.time.data) & set(verif.time.data)) ) else: times = np.sort(list(set(hind.init.data) & set(verif.time.data))) hind = hind.sel(init=times) if isinstance(hist, xr.Dataset): hist = hist.sel(time=times) verif = verif.sel(time=times) return bootstrap_compute( hind, verif, hist=hist, alignment=alignment, metric=metric, comparison=comparison, dim=dim, reference=reference, resample_dim=resample_dim, sig=sig, iterations=iterations, pers_sig=pers_sig, compute=compute_hindcast, resample_uninit=bootstrap_uninitialized_ensemble, **metric_kwargs, )
[docs]def bootstrap_perfect_model( init_pm, control, metric="pearson_r", comparison="m2e", dim=None, reference=None, resample_dim="member", sig=95, iterations=500, pers_sig=None, **metric_kwargs, ): """Bootstrap compute with replacement. Wrapper of py:func:`bootstrap_compute` for perfect-model framework. Args: hind (xr.Dataset): prediction ensemble. verif (xr.Dataset): Verification data. hist (xr.Dataset): historical/uninitialized simulation. metric (str): `metric`. Defaults to 'pearson_r'. comparison (str): `comparison`. Defaults to 'm2e'. dim (str): dimension to apply metric over. default: ['init', 'member']. reference (str, list of str): Type of reference forecasts with which to verify. One or more of ['persistence', 'uninitialized']. If None or empty, returns no p value. resample_dim (str or list): dimension to resample from. default: 'member'. - 'member': select a different set of members from hind - 'init': select a different set of initializations from hind sig (int): Significance level for uninitialized and initialized skill. Defaults to 95. pers_sig (int): Significance level for persistence skill confidence levels. Defaults to sig. iterations (int): number of resampling iterations (bootstrap with replacement). Defaults to 500. ** metric_kwargs (dict): additional keywords to be passed to metric (see the arguments required for a given metric in :ref:`Metrics`). Returns: results: (xr.Dataset): bootstrapped results for the three different kinds of predictions: - `initialized` for the initialized hindcast `hind` and describes skill due to initialization and external forcing - `uninitialized` for the uninitialized/historical and approximates skill from external forcing - `persistence` for the persistence forecast - `climatology` the different results: - `skill`: skill values - `p`: p value - `low_ci` and `high_ci`: high and low ends of confidence intervals based on significance threshold `sig` Reference: * Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013): 245–72. https://doi.org/10/f4jjvf. See also: * climpred.bootstrap.bootstrap_compute * climpred.prediction.compute_perfect_model """ if dim is None: dim = ["init", "member"] # Check init & time is int, cftime, or datetime; convert ints or datetime to cftime. init_pm = convert_time_index( init_pm, "init", "init_pm[init]", calendar=PM_CALENDAR_STR ) control = convert_time_index( control, "time", "control[time]", calendar=PM_CALENDAR_STR ) lead_units_equal_control_time_stride(init_pm, control) return bootstrap_compute( init_pm, control, hist=None, metric=metric, comparison=comparison, dim=dim, reference=reference, resample_dim=resample_dim, sig=sig, iterations=iterations, pers_sig=pers_sig, compute=compute_perfect_model, resample_uninit=bootstrap_uninit_pm_ensemble_from_control_cftime, **metric_kwargs, )
def _bootstrap_func( func, ds, resample_dim, sig=95, iterations=500, *func_args, **func_kwargs, ): """Sig % threshold of function based on iterations resampling with replacement. Reference: * Mason, S. J., and G. M. Mimmack. “The Use of Bootstrap Confidence Intervals for the Correlation Coefficient in Climatology.” Theoretical and Applied Climatology 45, no. 4 (December 1, 1992): 229–33. https://doi.org/10/b6fnsv. Args: func (function): function to be bootstrapped. ds (xr.object): first input argument of func. `chunk` ds on `dim` other than `resample_dim` for potential performance increase when multiple CPUs available. resample_dim (str): dimension to resample from. sig (int,float,list): significance levels to return. Defaults to 95. iterations (int): number of resample iterations. Defaults to 500. *func_args (type): `*func_args`. **func_kwargs (type): `**func_kwargs`. Returns: sig_level: bootstrapped significance levels with dimensions of init_pm and len(sig) if sig is list """ if not callable(func): raise ValueError(f"Please provide func as a function, found {type(func)}") warn_if_chunking_would_increase_performance(ds) if isinstance(sig, list): psig = [i / 100 for i in sig] else: psig = sig / 100 resample_func = _get_resample_func(ds) bootstraped_ds = resample_func(ds, iterations, dim=resample_dim, replace=False) bootstraped_results = func(bootstraped_ds, *func_args, **func_kwargs) bootstraped_results = rechunk_to_single_chunk_if_more_than_one_chunk_along_dim( bootstraped_results, dim="iteration" ) sig_level = bootstraped_results.quantile(dim="iteration", q=psig, skipna=False) return sig_level
[docs]def dpp_threshold(control, sig=95, iterations=500, dim="time", **dpp_kwargs): """Calc DPP significance levels from re-sampled dataset. Reference: * Feng, X., T. DelSole, and P. Houser. “Bootstrap Estimated Seasonal Potential Predictability of Global Temperature and Precipitation.” Geophysical Research Letters 38, no. 7 (2011). https://doi.org/10/ft272w. See also: * climpred.bootstrap._bootstrap_func * climpred.stats.dpp """ return _bootstrap_func( dpp, control, dim, sig=sig, iterations=iterations, **dpp_kwargs )
[docs]def varweighted_mean_period_threshold(control, sig=95, iterations=500, time_dim="time"): """Calc the variance-weighted mean period significance levels from re-sampled dataset. See also: * climpred.bootstrap._bootstrap_func * climpred.stats.varweighted_mean_period """ if varweighted_mean_period is None: raise ImportError( "xrft is not installed; see" "https://xrft.readthedocs.io/en/latest/installation.html" ) return _bootstrap_func( varweighted_mean_period, control, time_dim, sig=sig, iterations=iterations, )