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CHAPTER 1

Version 2.0.0 Release

We now support sub-annual (e.g., seasonal, monthly, weekly, daily) forecasts. We provide a host of determinis-
tic and probabilistic metrics. We support both perfect-model and hindcast-based prediction ensembles, and provide
PerfectModelEnsemble and HindcastEnsemble classes to make analysis easier.

See quick start and our examples to get started.
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CHAPTER 2

Installation

You can install the latest release of climpred using pip or conda:

pip install climpred

conda install -c conda-forge climpred

You can also install the bleeding edge (pre-release versions) by cloning this repository and running pip install
. --upgrade in the main directory

Getting Started

• Overview: Why climpred?

• Scope of climpred

• Quick Start

• Examples

2.1 Overview: Why climpred?

There are many packages out there related to computing metrics on initialized geoscience predictions. However, we
didn’t find any one package that unified all our needs.

Output from earth system prediction hindcast (also called re-forecast) experiments is difficult to work with. A typi-
cal output file could contain the dimensions initialization, lead time, ensemble member, latitude,
longitude, depth. climpred leverages the labeled dimensions of xarray to handle the headache of book-
keeping for you. We offer HindcastEnsemble and PerfectModelEnsemble objects that carry products to
verify against (e.g., control runs, reconstructions, uninitialized ensembles) along with your decadal prediction output.

When computing lead-dependent skill scores, climpred handles all of the lag-correlating for you, properly aligning
the multiple time dimensions between the hindcast and verification datasets. We offer a suite of vectorized determinis-
tic and probabilistic metrics that can be applied to time series and grids. It’s as easy as adding your decadal prediction
output to an object and running compute: HindcastEnsemble.verify(metric='rmse').
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2.2 Scope of climpred

climpred aims to be the primary package used to analyze output from initialized dynamical forecast models, ranging
from short-term weather forecasts to decadal climate forecasts. The code base will be driven entirely by the geoscien-
tific prediction community through open source development. It leverages xarray to keep track of core prediction
ensemble dimensions (e.g., ensemble member, initialization date, and lead time) and dask to perform out-of-memory
computations on large datasets.

The primary goal of climpred is to offer a comprehensive set of analysis tools for assessing the forecasts relative
to a validation product (e.g., observations, reanalysis products, control runs, baseline forecasts). This will range from
simple deterministic and probabilistic verification metrics—such as mean absolute error and various skill scores—to
more advanced analysis methods, such as relative entropy and mutual information. climpred expects users to handle
their domain-specific post-processing of model output, so that the package can focus on the actual analysis of forecasts.

Finally, the climpred documentation will serve as a repository of unified analysis methods through jupyter notebook
examples, and will also collect relevant references and literature.

2.3 Quick Start

The easiest way to get up and running is to load in one of our example datasets (or load in some data of your own) and
to convert them to either a HindcastEnsemble or PerfectModelEnsemble object.

climpred provides example datasets from the MPI-ESM-LR decadal prediction ensemble and the CESM decadal
prediction ensemble. See our examples to see some analysis cases.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
from climpred.tutorial import load_dataset
import climpred

You can view the datasets available to be loaded with the load_datasets() command without passing any arguments:

[2]: load_dataset()

'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global
→˓mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean
→˓SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs

(continues on next page)
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'GMAO-GEOS-RMM1': daily RMM1 from the GMAO-GEOS-V2p1 model for SubX
'RMM-INTERANN-OBS': observed RMM with interannual variablity included

From here, loading a dataset is easy. Note that you need to be connected to the internet for this to work – the datasets
are being pulled from the climpred-data repository. Once loaded, it is cached on your computer so you can reload
extremely quickly. These datasets are very small (< 1MB each) so they won’t take up much space.

[3]: hind = climpred.tutorial.load_dataset('CESM-DP-SST')
# Add lead attribute units.
hind["lead"].attrs["units"] = "years"
obs = climpred.tutorial.load_dataset('ERSST')

Make sure your prediction ensemble’s dimension labeling conforms to climpred’s standards. In other words, you
need an init, lead, and (optional) member dimension. Make sure that your init and lead dimensions align.
E.g., a November 1st, 1954 initialization should be labeled as init=1954 so that the lead=1 forecast is 1955.

[4]: print(hind)

<xarray.Dataset>
Dimensions: (init: 64, lead: 10, member: 10)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* member (member) int32 1 2 3 4 5 6 7 8 9 10

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0
Data variables:

SST (init, lead, member) float64 ...

We’ll quickly process the data to create anomalies. CESM-DPLE’s drift-correction occurs over 1964-2014, so we’ll
remove that from the observations.

[5]: # subtract climatology
obs = obs - obs.sel(time=slice(1964, 2014)).mean()

We’ll also remove a linear trend so that it doesn’t artificially boost our predictability.

[6]: hind = climpred.stats.rm_trend(hind, dim='init')
obs = climpred.stats.rm_trend(obs, dim='time')

We have to add the lead attributes back on, because xarray sometimes drops attributes. This is a bug we’re aware of
that we are working on fixing for climpred.

[7]: # Add lead attribute units.
hind["lead"].attrs["units"] = "years"

We can now create a HindcastEnsemble object and add our observations and name them 'Obs'.

[8]: hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_observations(obs, 'Obs')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 0.005165 0.03014 ... 0.1842 0.1812
Obs:

SST (time) float32 -0.061960407 -0.023283795 ... 0.072058104 0.165859
Uninitialized:

None
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/Users/ribr5703/miniconda3/envs/climpred-dev/lib/python3.6/site-packages/climpred/
→˓utils.py:141: UserWarning: Assuming annual resolution due to numeric inits. Change
→˓init to a datetime if it is another resolution.
'Assuming annual resolution due to numeric inits. '

Now we’ll quickly calculate skill and persistence. We have a variety of possible metrics to use.

[9]: result = hindcast.verify(metric='acc', reference='persistence')
skill = result.sel(skill='init')
persistence = result.sel(skill='persistence')
print(skill)

<xarray.Dataset>
Dimensions: (lead: 10)
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10
skill <U11 'init'

Data variables:
SST (lead) float64 0.6253 0.4349 0.3131 ... 0.1861 0.01881 -0.1084

[10]: plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
skill.SST.plot(marker='o', markersize=10, label='skill')
persistence.SST.plot(marker='o', markersize=10, label='persistence',

color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Predictability',

ylabel='Anomaly \n Correlation Coefficient',
xlabel='Lead Year')

plt.show()

We can also check error in our forecasts.

[12]: result = hindcast.verify(metric='rmse', reference='persistence')
skill = result.sel(skill='init')
persistence = result.sel(skill='persistence')

[13]: plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))

(continues on next page)
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skill.SST.plot(marker='o', markersize=10, label='initialized forecast')
persistence.SST.plot(marker='o', markersize=10, label='persistence',

color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Forecast Error',

ylabel='RMSE',
xlabel='Lead Year')

plt.show()

2.4 Examples

2.4.1 Dask

Using dask with climpred

This demo demonstrates climpred’s capabilities with dask https://docs.dask.org/en/latest/array.html. This enables
enables out-of-memory and parallel computation for large datasets with climpred.

[1]: import warnings

%matplotlib inline
import numpy as np
import xarray as xr
import dask
import climpred

warnings.filterwarnings("ignore")

• Load a Client to use dask.distributed: https://stackoverflow.com/questions/51099685/
best-practices-in-setting-number-of-dask-workers

• (Optionally) Use the dask dashboard to visualize performance: https://github.com/dask/dask-labextension

[11]: from dask.distributed import Client
import multiprocessing
ncpu = multiprocessing.cpu_count()

(continues on next page)
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processes = False
nworker = 8
threads = ncpu // nworker
print(

f"Number of CPUs: {ncpu}, number of threads: {threads}, number of workers:
→˓{nworker}, processes: {processes}",
)
client = Client(

processes=processes,
threads_per_worker=threads,
n_workers=nworker,
memory_limit="64GB",

)
client

Number of CPUs: 48, number of threads: 6, number of workers: 8, processes: False

[11]: <Client: 'inproc://10.50.36.67/15942/1' processes=8 threads=48, memory=512.00 GB>

Load data

[12]: # generic
ny, nx = 256, 220
nl, ni, nm = 20, 12, 10
ds = xr.DataArray(np.random.random((nl, ni, nm, ny, nx)), dims=('lead', 'init',
→˓'member', 'y', 'x'))
ds['init'] = np.arange(3000, 3300, 300 // ni)
ds['lead'] = np.arange(1,1+ds.lead.size)
control = xr.DataArray(np.random.random((300, ny, nx)),dims=('time', 'y', 'x'))
control['time'] = np.arange(3000, 3300)

compute skill with compute_perfect_model

[13]: kw = {'comparison':'m2e', 'metric':'rmse'}

compute skill without dask

[14]: %time s = climpred.prediction.compute_perfect_model(ds, control, **kw)

CPU times: user 10.9 s, sys: 10.9 s, total: 21.8 s
Wall time: 19.9 s

• 2 core Mac Book Pro 2018: CPU times: user 11.5 s, sys: 6.88 s, total: 18.4 s Wall time: 19.6 s

• 24 core mistral node: CPU times: user 9.22 s, sys: 10.3 s, total: 19.6 s Wall time: 19.5 s

compute skill with dask

In order to use dask efficient, we need to chunk the data appropriately. Processing chunks of data lazily with dask
creates a tiny overhead per dask, therefore chunking mostly makes sense when applying it to large data.
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[26]: chunked_dim = 'y'
chunks = {chunked_dim:ds[chunked_dim].size // nworker}
ds = ds.chunk(chunks)
# if memory allows
ds = ds.persist()
ds.data

[26]: dask.array<rechunk-merge, shape=(20, 12, 10, 256, 220), dtype=float64, chunksize=(20,
→˓12, 10, 32, 220), chunktype=numpy.ndarray>

[27]: %%time
s_chunked = climpred.prediction.compute_perfect_model(ds, control, **kw)
assert dask.is_dask_collection(s_chunked)
s_chunked = s_chunked.compute()

CPU times: user 25.5 s, sys: 1min 21s, total: 1min 46s
Wall time: 5.42 s

• 2 core Mac Book Pro 2018: CPU times: user 2min 35s, sys: 1min 4s, total: 3min 40s Wall time: 2min 10s

• 24 core mistral node: CPU times: user 26.2 s, sys: 1min 37s, total: 2min 3s Wall time: 5.38 s

[28]: try:
xr.testing.assert_allclose(s,s_chunked,atol=1e-6)

except AssertionError:
for v in s.data_vars:

(s-s_chunked)[v].plot(robust=True, col='lead')

• The results s and s_chunked are identical as requested.

• Chunking reduces Wall time from 20s to 5s on supercomputer.

bootstrap skill with bootstrap_perfect_model

This speedup translates into bootstrap_perfect_model, where bootstrapped resamplings of intializialized,
uninitialized and persistence skill are computed and then translated into p values and confidence intervals.

[29]: kwp = kw.copy()
kwp['iterations'] = 4

bootstrap skill without dask

[30]: ds = ds.compute()
control = control.compute()

[31]: %time s_p = climpred.bootstrap.bootstrap_perfect_model(ds, control, **kwp)

CPU times: user 1min 51s, sys: 1min 54s, total: 3min 45s
Wall time: 3min 25s

• 2 core Mac Book Pro 2018: CPU times: user 2min 3s, sys: 1min 22s, total: 3min 26s Wall time: 3min 43s

• 24 core mistral node: CPU times: user 1min 51s, sys: 1min 54s, total: 3min 45s Wall time: 3min 25s
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bootstrap skill with dask

When ds is chunked, bootstrap_perfect_model performs all skill calculations on resampled inputs in parallel.

[32]: chunked_dim = 'y'
chunks = {chunked_dim:ds[chunked_dim].size // nworker}
ds = ds.chunk(chunks)
# if memory allows
ds = ds.persist()
ds.data

[32]: dask.array<xarray-<this-array>, shape=(20, 12, 10, 256, 220), dtype=float64,
→˓chunksize=(20, 12, 10, 32, 220), chunktype=numpy.ndarray>

[33]: %time s_p_chunked = climpred.bootstrap.bootstrap_perfect_model(ds, control, **kwp)

CPU times: user 2min 55s, sys: 8min 8s, total: 11min 3s
Wall time: 1min 53s

• 2 core Mac Book Pro 2018: CPU times: user 2min 35s, sys: 1min 4s, total: 3min 40s Wall time: 2min 10s

• 24 core mistral node: CPU times: user 2min 55s, sys: 8min 8s, total: 11min 3s Wall time: 1min 53s

[ ]:

2.4.2 Pre-Processing

Setting up your own output

This demo demonstrates how you can setup your raw model output with climpred.preprocessing to match
climpred’s expectations.

[1]: from dask.distributed import Client
import multiprocessing
ncpu = multiprocessing.cpu_count()
threads = 6
nworker = ncpu//threads
print(f'Number of CPUs: {ncpu}, number of threads: {threads}, number of workers:
→˓{nworker}')

Number of CPUs: 48, number of threads: 6, number of workers: 8

[2]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

import climpred

[3]: from climpred.preprocessing.shared import load_hindcast, set_integer_time_axis
from climpred.preprocessing.mpi import get_path

Assuming your raw model output is stored in multiple files per member and initialization, load_hindcast is a nice
wrapper function based on get_path designed for the output format of MPI-ESM to aggregated all hindcast output
into one file as expected by climpred.
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The basic idea is to look over the output of all members and concatinate, then loop over all initializations and concati-
nate. Before concatination, it is important to make the time dimension identical in all input datasets for concatination.

To reduce the data size, use the preprocess function provided to xr.open_mfdataset wisely in combination
with set_integer_axis, e.g. additionally extracting only a certain region, time-step, time-aggregation or only
few variables for a multi-variable input file as in MPI-ESM standard output.

[4]: # check the code of load_hindcast
# load_hindcast??

[5]: v = "global_primary_production"

def preprocess_1var(ds, v=v):
"""Only leave one variable `v` in dataset """
return ds[v].to_dataset(name=v).squeeze()

[6]: # lead_offset because yearmean output
%time ds = load_hindcast(inits=range(1961, 1965), members=range(1, 3),
→˓preprocess=preprocess_1var, get_path=get_path)

Processing init 1961 ...
Processing init 1962 ...
Processing init 1963 ...
Processing init 1964 ...
CPU times: user 5.07 s, sys: 2.06 s, total: 7.13 s
Wall time: 5.19 s

[7]: # what we need for climpred
ds.coords

[7]: Coordinates:
depth float64 0.0
lat float64 0.0
lon float64 0.0

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10

* member (member) int64 1 2

* init (init) int64 1961 1962 1963 1964

[8]: ds[v].data

[8]: dask.array<concatenate, shape=(4, 2, 10), dtype=float32, chunksize=(1, 1, 1),
→˓chunktype=numpy.ndarray>

[9]: # loading the data into memory
# if not rechunk
%time ds = ds.load()

CPU times: user 216 ms, sys: 44 ms, total: 260 ms
Wall time: 220 ms

[10]: # you may actually want to use `compute_hindcast` to calculate skill from hindcast.
# for this you also need an `observation` to compare to
# here `compute_perfect_model` compares one member to the ensemble mean of the remain
→˓members in turn
climpred.prediction.compute_perfect_model(ds, ds.rename({'lead':'time'}))

[10]: <xarray.Dataset>
Dimensions: (lead: 10)

(continues on next page)
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Coordinates:
depth float64 0.0
lon float64 0.0
lat float64 0.0

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10
Data variables:

global_primary_production (lead) float64 -0.1276 0.593 ... 0.09196 0.5038
Attributes:

prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_perfect_model
number_of_initializations: 4
number_of_members: 2
metric: pearson_r
comparison: m2e
dim: ['init', 'member']
units: None
created: 2020-02-07 18:27:28

intake-esm for cmorized output

In case you have access to cmorized output of CMIP experiments, consider using intake-esm.
With the preprocess function you can align the time dimension of all input files. Finally,
rename_to_climpred_dims only renames.

[11]: from climpred.preprocessing.shared import rename_to_climpred_dims, set_integer_time_
→˓axis

[12]: # make to have intake-esm installed
import intake # this is enough for intake-esm to work

[13]: # https://github.com/NCAR/intake-esm-datastore/
col_url = "/home/mpim/m300524/intake-esm-datastore/catalogs/mistral-cmip6.json"
col = intake.open_esm_datastore(col_url)

[14]: col.df.columns

[14]: Index(['activity_id', 'institution_id', 'source_id', 'experiment_id',
'member_id', 'table_id', 'variable_id', 'grid_label', 'dcpp_init_year',
'version', 'time_range', 'path'],

dtype='object')

[15]: # load 2 members for 2 inits for one variable from one model
query = dict(experiment_id=[

'dcppA-hindcast'], table_id='Amon', member_id=['r1i1p1f1', 'r2i1p1f1'], dcpp_init_
→˓year=[1970, 1971],

variable_id='tas', source_id='MPI-ESM1-2-HR')
cat = col.search(**query)
cdf_kwargs = {'chunks': {'time': 12}, 'decode_times': False}

[16]: cat.df.head()

[16]: activity_id institution_id source_id experiment_id member_id \
0 DCPP MPI-M MPI-ESM1-2-HR dcppA-hindcast r1i1p1f1
1 DCPP MPI-M MPI-ESM1-2-HR dcppA-hindcast r1i1p1f1

(continues on next page)
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2 DCPP MPI-M MPI-ESM1-2-HR dcppA-hindcast r2i1p1f1
3 DCPP MPI-M MPI-ESM1-2-HR dcppA-hindcast r2i1p1f1

table_id variable_id grid_label dcpp_init_year version time_range \
0 Amon tas gn 1971.0 v20190906 197111-198112
1 Amon tas gn 1970.0 v20190906 197011-198012
2 Amon tas gn 1971.0 v20190906 197111-198112
3 Amon tas gn 1970.0 v20190906 197011-198012

path
0 /work/ik1017/CMIP6/data/CMIP6/DCPP/MPI-M/MPI-E...
1 /work/ik1017/CMIP6/data/CMIP6/DCPP/MPI-M/MPI-E...
2 /work/ik1017/CMIP6/data/CMIP6/DCPP/MPI-M/MPI-E...
3 /work/ik1017/CMIP6/data/CMIP6/DCPP/MPI-M/MPI-E...

[17]: def preprocess(ds):
# extract tiny spatial and temporal subset to make this fast
ds = ds.isel(lon=[50, 51, 52], lat=[50, 51, 52],

time=np.arange(12 * 2))
# make time dim identical
ds = set_integer_time_axis(ds,time_dim='time')
return ds

[18]: dset_dict = cat.to_dataset_dict(
cdf_kwargs=cdf_kwargs, preprocess=preprocess)

Progress: || 100.0%

--> The keys in the returned dictionary of datasets are constructed as follows:
'activity_id.institution_id.source_id.experiment_id.table_id.grid_label'

--> There are 1 group(s)

[19]: # get first dict value
_, ds = dset_dict.popitem()
ds.coords

[19]: Coordinates:
height float64 ...

* dcpp_init_year (dcpp_init_year) float64 1.97e+03 1.971e+03

* lat (lat) float64 -42.55 -41.61 -40.68

* time (time) int64 1 2 3 4 5 6 7 8 9 ... 17 18 19 20 21 22 23 24

* lon (lon) float64 46.88 47.81 48.75

* member_id (member_id) <U8 'r1i1p1f1' 'r2i1p1f1'

[20]: # rename to comply with climpred's required dimension names
ds = rename_to_climpred_dims(ds)

[21]: # what we need for climpred
ds.coords

[21]: Coordinates:
height float64 ...

* init (init) float64 1.97e+03 1.971e+03

* lat (lat) float64 -42.55 -41.61 -40.68

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10 ... 15 16 17 18 19 20 21 22 23 24

(continues on next page)
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* lon (lon) float64 46.88 47.81 48.75

* member (member) <U8 'r1i1p1f1' 'r2i1p1f1'

[22]: ds['tas'].data

[22]: dask.array<concatenate, shape=(2, 2, 24, 3, 3), dtype=float32, chunksize=(1, 1, 12, 3,
→˓ 3), chunktype=numpy.ndarray>

[23]: # loading the data into memory
# if not rechunk
# this is here quite fast before we only select 9 grid cells
%time ds = ds.load()

CPU times: user 218 ms, sys: 74 ms, total: 292 ms
Wall time: 237 ms

[24]: # you may actually want to use `compute_hindcast` to calculate skill from hindcast.
# for this you also need an `observation` to compare to
# here `compute_perfect_model` compares one member to the ensemble mean of the remain
→˓members in turn
climpred.prediction.compute_perfect_model(ds, ds.rename({'lead':'time'}))

/work/mh0727/m300524/miniconda3/envs/climpred-dev/lib/python3.6/site-packages/
→˓xskillscore/core/np_deterministic.py:182: RuntimeWarning: invalid value encountered
→˓in true_divide
r = r_num / r_den

[24]: <xarray.Dataset>
Dimensions: (bnds: 2, lat: 3, lead: 24, lon: 3)
Coordinates:

height float64 2.0

* lat (lat) float64 -42.55 -41.61 -40.68

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10 ... 16 17 18 19 20 21 22 23 24

* lon (lon) float64 46.88 47.81 48.75
Dimensions without coordinates: bnds
Data variables:

lat_bnds (lead, lat, bnds) float64 nan nan nan nan nan ... nan nan nan nan
time_bnds (lead, bnds) float64 nan nan nan nan nan ... nan nan nan nan nan
lon_bnds (lead, lon, bnds) float64 nan nan nan nan nan ... nan nan nan nan
tas (lead, lat, lon) float32 0.933643 0.88438606 ... -0.8581106

Attributes:
nominal_resolution: 100 km
institution: Max Planck Institute for Meteorology, Hamb...
experiment_id: dcppA-hindcast
variable_id: tas
experiment: hindcast initialized based on observations...
tracking_id: hdl:21.14100/f41d2fe5-bb1c-49d0-8afa-0cb9e...
table_info: Creation Date:(09 May 2019) MD5:e6ef8ececc...
references: MPI-ESM: Mauritsen, T. et al. (2019), Deve...
frequency: mon
source_id: MPI-ESM1-2-HR
physics_index: 1
initialization_index: 1
product: model-output
source_type: AOGCM
title: MPI-ESM1-2-HR output prepared for CMIP6
institution_id: MPI-M

(continues on next page)
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(continued from previous page)

project_id: CMIP6
Conventions: CF-1.7 CMIP-6.2
intake_esm_varname: tas
activity_id: DCPP
branch_method: standard lagged initialization
table_id: Amon
data_specs_version: 01.00.30
grid_label: gn
forcing_index: 1
external_variables: areacella
cmor_version: 3.5.0
realm: atmos
history: 2019-09-06T14:20:04Z ; CMOR rewrote data t...
grid: spectral T127; 384 x 192 longitude/latitude
license: CMIP6 model data produced by MPI-M is lice...
source: MPI-ESM1.2-HR (2017): \naerosol: none, pre...
mip_era: CMIP6
contact: cmip6-mpi-esm@dkrz.de
prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_perfect_model
number_of_initializations: 2
number_of_members: 2
metric: pearson_r
comparison: m2e
dim: ['init', 'member']
units: None
created: 2020-02-07 18:27:51

2.4.3 Subseasonal

Calculate the skill of a MJO Index as a function of lead time

In this example, we demonstrate:

1. How to remotely access data from the Subseasonal Experiment (SubX) hindcast database and set it up to be
used in climpred.

2. How to calculate the Anomaly Correlation Coefficient (ACC) using daily data with climpred

3. How to calculate and plot historical forecast skill of the real-time multivariate MJO (RMM) indices as function
of lead time.

The Subseasonal Experiment (SubX)

Further information on SubX is available from Pegion et al. 2019 and the SubX project website

The SubX public database is hosted on the International Research Institute for Climate and Society (IRI) data server
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/

Since the SubX data server is accessed via this notebook, the time for the notebook to run may is several minutes and
will vary depending on the speed that data can be downloaded. This is a large dataset, so please be patient. If you
prefer to download SubX data locally, scripts are available from https://github.com/kpegion/SubX.
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Definitions

RMM Two indices (RMM1 and RMM2) are used to represent the MJO. Together they define the MJO based on 8
phases and can represent both the phase and amplitude of the MJO (Wheeler and Hendon 2004). This example
uses the observed RMM1 provided by Matthew Wheeler at the Center for Australian Weather and Climate
Research. It is the version of the indices in which interannual variability has not been removed.

Skill of RMM Traditionally, the skill of the RMM is calculated as a bivariate correlation encompassing the skill of
the two indices together (Rashid et al. 2010; Gottschalck et al. 2010). Currently, climpred does not have
the functionality to calculate the bivariate correlation, thus the anomaly correlation coefficient for RMM1 index
is calculated here as a demonstration. The bivariate correlation metric will be added in a future version of
climpred

[1]: import warnings

import matplotlib.pyplot as plt
plt.style.use('ggplot')
plt.style.use('seaborn-talk')

import xarray as xr
import pandas as pd
import numpy as np

from climpred import HindcastEnsemble
import climpred

[2]: warnings.filterwarnings("ignore")

Function to set 360 calendar to 360_day calendar and decond cf times

[3]: def decode_cf(ds, time_var):
if ds[time_var].attrs['calendar'] == '360':

ds[time_var].attrs['calendar'] = '360_day'
ds = xr.decode_cf(ds, decode_times=True)
return ds

Read the observed RMM Indices

[4]: obsds = climpred.tutorial.load_dataset('RMM-INTERANN-OBS')['rmm1'].to_dataset()
obsds = obsds.dropna('time') # Get rid of missing times.

[5]: plt.plot(obsds['rmm1'])

[5]: [<matplotlib.lines.Line2D at 0x1263a64e0>]
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Read the SubX RMM1 data for the GMAO-GEOS_V2p1 model from the SubX data server. It is important to note
that the SubX data contains weekly initialized forecasts where the init day varies by model. SubX data may have all
NaNs for initial dates in which a model does not make a forecast, thus we apply dropna over the S=init dimension
when how=all data for a given S=init is missing. This can be slow, but allows the rest of the calculations to go
more quickly.

Note that we ran the dropna operation offline and then uploaded the post-processed SubX dataset to the
climpred-data repo for the purposes of this demo. This is how you can do this manually:

url = 'http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/.GMAO/.GEOS_V2p1/.
→˓hindcast/.RMM/.RMM1/dods/'
fcstds = xr.open_dataset(url, decode_times=False, chunks={'S': 1, 'L': 45}).
→˓dropna(dim='S',how='all')

[6]: fcstds = climpred.tutorial.load_dataset('GMAO-GEOS-RMM1', decode_times=False)
print(fcstds)

<xarray.Dataset>
Dimensions: (L: 45, M: 4, S: 510)
Coordinates:

* S (S) float32 14245.0 14250.0 14255.0 ... 20439.0 20444.0 20449.0

* M (M) float32 1.0 2.0 3.0 4.0

* L (L) float32 0.5 1.5 2.5 3.5 4.5 5.5 ... 40.5 41.5 42.5 43.5 44.5
Data variables:

RMM1 (S, M, L) float32 ...
Attributes:

Conventions: IRIDL
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The SubX data dimensions correspond to the following climpred dimension definitions:
X=lon,L=lead,Y=lat,M=member, S=init. We will rename the dimensions to their climpred names.

[7]: fcstds=fcstds.rename({'S': 'init','L': 'lead','M': 'member', 'RMM1' : 'rmm1'})

Let’s make sure that the lead dimension is set properly for climpred. SubX data stores leads as 0.5, 1.5, 2.5,
etc, which correspond to 0, 1, 2, . . . days since initialization. We will change the lead to be integers starting with
zero.

[8]: fcstds['lead']=(fcstds['lead']-0.5).astype('int')

Now we need to make sure that the init dimension is set properly for climpred. For daily data, the init
dimension must be a xr.CFTimeIndex or a pd.DatetimeIndex. We convert the init values to pd.
DatetimeIndex.

[9]: fcstds = decode_cf(fcstds, 'init')

climpred also requires that lead dimension has an attribute called units indicating what time units the lead is
assocated with. Options are: years,seasons,months,weeks,pentads,days. For the SubX data, the lead
units are days.

[10]: fcstds['lead'].attrs={'units': 'days'}

Create the climpred HindcastEnsemble object and add the observations.

[11]: hindcast = HindcastEnsemble(fcstds)

[12]: hindcast = hindcast.add_observations(obsds, 'obs')

Calculate the Anomaly Correlation Coefficient (ACC)

[13]: skill = hindcast.verify(metric='acc', alignment='maximize')

Plot the skill as a function of lead time

[14]: plt.plot(skill['rmm1'])
plt.title('GMAO-GEOS_V2p1 RMM1 Skill')
plt.xlabel('Lead Time (Days)')
plt.ylabel('ACC')

[14]: Text(0, 0.5, 'ACC')
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Calculate the skill of a MJO Index as a function of lead time for Weekly Data

In this example, we demonstrate:

1. How to remotely access data from the Subseasonal Experiment (SubX) hindcast database and set it up to be
used in climpred.

2. How to calculate the Anomaly Correlation Coefficient (ACC) using weekly data with climpred

3. How to calculate and plot historical forecast skill of the real-time multivariate MJO (RMM) indices as function
of lead time.

The Subseasonal Experiment (SubX)

Further information on SubX is available from Pegion et al. 2019 and the SubX project website

The SubX public database is hosted on the International Research Institute for Climate and Society (IRI) data server
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/

Since the SubX data server is accessed via this notebook, the time for the notebook to run may is several minutes and
will vary depending on the speed that data can be downloaded. This is a large dataset, so please be patient. If you
prefer to download SubX data locally, scripts are available from https://github.com/kpegion/SubX.

Definitions

RMM Two indices (RMM1 and RMM2) are used to represent the MJO. Together they define the MJO based on 8
phases and can represent both the phase and amplitude of the MJO (Wheeler and Hendon 2004). This example
uses the observed RMM1 provided by Matthew Wheeler at the Center for Australian Weather and Climate
Research. It is the version of the indices in which interannual variability has not been removed.

Skill of RMM Traditionally, the skill of the RMM is calculated as a bivariate correlation encompassing the skill of
the two indices together (Rashid et al. 2010; Gottschalck et al 2010). Currently, climpred does not have
the functionality to calculate the bivariate correlation, thus the anomaly correlation coefficient for RMM1 index
is calculated here as a demonstration. The bivariate correlation metric will be added in a future version of
climpred

[1]: import warnings

import matplotlib.pyplot as plt
plt.style.use('ggplot')
plt.style.use('seaborn-talk')

import xarray as xr
import pandas as pd
import numpy as np

from climpred import HindcastEnsemble
import climpred

[2]: warnings.filterwarnings("ignore")

Function to set 360 calendar to 360_day calendar and decode cf times
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[3]: def decode_cf(ds, time_var):
if ds[time_var].attrs['calendar'] == '360':

ds[time_var].attrs['calendar'] = '360_day'
ds = xr.decode_cf(ds, decode_times=True)
return ds

Read the observed RMM Indices

[4]: obsds = climpred.tutorial.load_dataset('RMM-INTERANN-OBS')['rmm1'].to_dataset()
obsds

[4]: <xarray.Dataset>
Dimensions: (time: 15613)
Coordinates:

* time (time) datetime64[ns] 1974-06-03 1974-06-04 ... 2017-07-24
Data variables:

rmm1 (time) float64 ...

Read the SubX RMM1 data for the GMAO-GEOS_V2p1 model from the SubX data server. It is important to note
that the SubX data contains weekly initialized forecasts where the init day varies by model. SubX data may have all
NaNs for initial dates in which a model does not make a forecast, thus we apply dropna over the S=init dimension
when how=all data for a given S=init is missing. This can be slow, but allows the rest of the calculations to go
more quickly.

Note that we ran the dropna operation offline and then uploaded the post-processed SubX dataset to the
climpred-data repo for the purposes of this demo. This is how you can do this manually:

url = 'http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/.GMAO/.GEOS_V2p1/.
→˓hindcast/.RMM/.RMM1/dods/'
fcstds = xr.open_dataset(url, decode_times=False, chunks={'S': 1, 'L': 45}).
→˓dropna(dim='S',how='all')

[5]: fcstds = climpred.tutorial.load_dataset('GMAO-GEOS-RMM1', decode_times=False)
print(fcstds)

<xarray.Dataset>
Dimensions: (L: 45, M: 4, S: 510)
Coordinates:

* S (S) float32 14245.0 14250.0 14255.0 ... 20439.0 20444.0 20449.0

* M (M) float32 1.0 2.0 3.0 4.0

* L (L) float32 0.5 1.5 2.5 3.5 4.5 5.5 ... 40.5 41.5 42.5 43.5 44.5
Data variables:

RMM1 (S, M, L) float32 ...
Attributes:

Conventions: IRIDL

The SubX data dimensions correspond to the following climpred dimension definitions:
X=lon,L=lead,Y=lat,M=member, S=init. We will rename the dimensions to their climpred names.

[6]: fcstds=fcstds.rename({'S': 'init','L': 'lead','M': 'member', 'RMM1' : 'rmm1'})

Let’s make sure that the lead dimension is set properly for climpred. SubX data stores leads as 0.5, 1.5, 2.5,
etc, which correspond to 0, 1, 2, . . . days since initialization. We will change the lead to be integers starting with
zero.

[7]: fcstds['lead']=(fcstds['lead']-0.5).astype('int')
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Now we need to make sure that the init dimension is set properly for climpred. For daily data, the init
dimension must be a xr.cfdateTimeIndex or a pd.datetimeIndex. We convert the init values to pd.
datatimeIndex.

[8]: fcstds=decode_cf(fcstds,'init')
fcstds['init']=pd.to_datetime(fcstds.init.values.astype(str))
fcstds['init']=pd.to_datetime(fcstds['init'].dt.strftime('%Y%m%d 00:00'))

Make Weekly Averages

[9]: fcstweekly=fcstds.rolling(lead=7,center=False).mean().dropna(dim='lead')
obsweekly=obsds.rolling(time=7,center=False).mean().dropna(dim='time')
print(fcstweekly)
print(obsweekly)

<xarray.Dataset>
Dimensions: (init: 510, lead: 39, member: 4)
Coordinates:

* init (init) datetime64[ns] 1999-01-01 1999-01-06 ... 2015-12-27

* member (member) float32 1.0 2.0 3.0 4.0

* lead (lead) int64 6 7 8 9 10 11 12 13 14 ... 36 37 38 39 40 41 42 43 44
Data variables:

rmm1 (init, member, lead) float32 0.13466184 0.10946906 ... 0.076061934
<xarray.Dataset>
Dimensions: (time: 15456)
Coordinates:

* time (time) datetime64[ns] 1974-06-09 1974-06-10 ... 2017-07-24
Data variables:

rmm1 (time) float64 1.336 1.107 0.9046 0.695 ... 0.6265 0.673 0.7352

Create a new xr.DataArray for the weekly fcst data

[10]: nleads=fcstweekly['lead'][::7].size
fcstweeklyda=xr.DataArray(fcstweekly['rmm1'][:,:,::7],

coords={'init' : fcstweekly['init'],
'member': fcstweekly['member'],
'lead': np.arange(1,nleads+1),
},

dims=['init', 'member','lead'])
fcstweeklyda.name = 'rmm1'

climpred requires that lead dimension has an attribute called units indicating what time units the lead is asso-
cated with. Options are: years,seasons,months,weeks,pentads,days. The lead units are weeks.

[11]: fcstweeklyda['lead'].attrs={'units': 'weeks'}

Create the climpred HindcastEnsemble object and add the observations.

[12]: hindcast = HindcastEnsemble(fcstweeklyda)
hindcast=hindcast.add_observations(obsweekly, 'observations')

Calculate the Anomaly Correlation Coefficient (ACC)

[13]: skill = hindcast.verify(metric='acc', alignment='maximize')

Plot the skill as a function of lead time
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[14]: x=np.arange(fcstweeklyda['lead'].size)
plt.bar(x,skill['rmm1'])
plt.title('GMAO_GOES_V2p1 RMM1 Skill')
plt.xlabel('Lead Time (Weeks)')
plt.ylabel('ACC')
plt.ylim(0.0, 1.0)

[14]: (0.0, 1.0)
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2.4.4 Monthly and Seasonal

Calculate ENSO Skill as a Function of Initial Month vs. Lead Time

In this example, we demonstrate:

1. How to remotely access data from the North American Multi-model Ensemble (NMME) hindcast database and
set it up to be used in climpred.

2. How to calculate the Anomaly Correlation Coefficient (ACC) using monthly data

3. How to calculate and plot historical forecast skill of the Nino3.4 index as function of initialization month and
lead time.

The North American Multi-model Ensemble (NMME)

Further information on NMME is available from Kirtman et al. 2014 and the NMME project website

The NMME public database is hosted on the International Research Institute for Climate and Society (IRI) data server
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/

Since the NMME data server is accessed via this notebook, the time for the notebook to run may take a few minutes
and vary depending on the speed that data is downloaded.

Definitions

Anomalies Departure from normal, where normal is defined as the climatological value based on the average value
for each month over all years.

Nino3.4 An index used to represent the evolution of the El Nino-Southern Oscillation (ENSO). Calculated as the
average sea surface temperature (SST) anomalies in the region 5S-5N; 190-240

[1]: import warnings

import matplotlib.pyplot as plt
import xarray as xr
import pandas as pd
import numpy as np
from tqdm.auto import tqdm

from climpred import HindcastEnsemble
import climpred

[2]: warnings.filterwarnings("ignore")

Function to set 360 calendar to 360_day calendar and decond cf times
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[3]: def decode_cf(ds, time_var):
if ds[time_var].attrs['calendar'] == '360':

ds[time_var].attrs['calendar'] = '360_day'
ds = xr.decode_cf(ds, decode_times=True)
return ds

Load the monthly sea surface temperature (SST) hindcast data for the NCEP-CFSv2 model from the NMME data
server. This is a large dataset, so we allow dask to chunk the data as it chooses.

[4]: url = 'http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/NCEP-CFSv2/.HINDCAST/.
→˓MONTHLY/.sst/dods'
fcstds = decode_cf(xr.open_dataset(url, decode_times=False,

chunks={'S': 'auto', 'L': 'auto', 'M':'auto'}),'S')

fcstds

[4]: <xarray.Dataset>
Dimensions: (L: 10, M: 24, S: 348, X: 360, Y: 181)
Coordinates:

* S (S) object 1982-01-01 00:00:00 ... 2010-12-01 00:00:00

* M (M) float32 1.0 2.0 3.0 4.0 5.0 6.0 ... 20.0 21.0 22.0 23.0 24.0

* X (X) float32 0.0 1.0 2.0 3.0 4.0 ... 355.0 356.0 357.0 358.0 359.0

* L (L) float32 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

* Y (Y) float32 -90.0 -89.0 -88.0 -87.0 -86.0 ... 87.0 88.0 89.0 90.0
Data variables:

sst (S, L, M, Y, X) float32 dask.array<chunksize=(6, 5, 8, 181, 360),
→˓meta=np.ndarray>
Attributes:

Conventions: IRIDL

The NMME data dimensions correspond to the following climpred dimension definitions:
X=lon,L=lead,Y=lat,M=member, S=init. We will rename the dimensions to their climpred names.

[5]: fcstds=fcstds.rename({'S': 'init','L': 'lead','M': 'member', 'X': 'lon', 'Y': 'lat'})

Let’s make sure that the lead dimension is set properly for climpred. NMME data stores leads as 0.5, 1.5, 2.5,
etc, which correspond to 0, 1, 2, . . . months since initialization. We will change the lead to be integers starting
with zero. climpred also requires that lead dimension has an attribute called units indicating what time units
the lead is assocated with. Options are: years,seasons,months,weeks,pentads,days. For the monthly
NMME data, the lead units are months.

[6]: fcstds['lead']=(fcstds['lead']-0.5).astype('int')
fcstds['lead'].attrs={'units': 'months'}

Now we need to make sure that the init dimension is set properly for climpred. For monthly data, the init
dimension must be a xr.cfdateTimeIndex or a pd.datetimeIndex. We convert the init values to pd.
datatimeIndex.

[7]: fcstds['init']=pd.to_datetime(fcstds.init.values.astype(str))
fcstds['init']=pd.to_datetime(fcstds['init'].dt.strftime('%Y%m01 00:00'))

Next, we want to get the verification SST data from the data server

[8]: obsurl='http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.OIv2_SST/.sst/dods'
verifds = decode_cf(xr.open_dataset(obsurl, decode_times=False),'T')
verifds
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[8]: <xarray.Dataset>
Dimensions: (T: 405, X: 360, Y: 181)
Coordinates:

* Y (Y) float32 -90.0 -89.0 -88.0 -87.0 -86.0 ... 87.0 88.0 89.0 90.0

* X (X) float32 0.0 1.0 2.0 3.0 4.0 ... 355.0 356.0 357.0 358.0 359.0

* T (T) object 1982-01-16 00:00:00 ... 2015-09-16 00:00:00
Data variables:

sst (T, Y, X) float32 ...
Attributes:

Conventions: IRIDL

Rename the dimensions to correspond to climpred dimensions

[9]: verifds=verifds.rename({'T': 'time','X': 'lon', 'Y': 'lat'})

Convert the time data to be of type pd.datetimeIndex

[10]: verifds['time']=pd.to_datetime(verifds.time.values.astype(str))
verifds['time']=pd.to_datetime(verifds['time'].dt.strftime('%Y%m01 00:00'))

Subset the data to 1982-2010

[11]: fcstds=fcstds.sel(init=slice('1982-01-01','2010-12-01'))
verifds=verifds.sel(time=slice('1982-01-01','2010-12-01'))

Calculate the Nino3.4 index for forecast and verification.

[12]: fcstnino34=fcstds.sel(lat=slice(-5,5),lon=slice(190,240)).mean(['lat','lon'])
verifnino34=verifds.sel(lat=slice(-5,5),lon=slice(190,240)).mean(['lat','lon'])

fcstclimo = fcstnino34.groupby('init.month').mean('init')
fcst = (fcstnino34.groupby('init.month') - fcstclimo)

verifclimo = verifnino34.groupby('time.month').mean('time')
verif = (verifnino34.groupby('time.month') - verifclimo)

Because will will calculate the anomaly correlation coefficient over all time for verification and init for the hind-
casts, we need to rechunk the data so that these dimensions are in same chunk

[13]: fcst=fcst.chunk({'init':-1})
verif=verif.chunk({'time':-1})

Use the climpred HindcastEnsemble to calculate the anomaly correlation coefficient (ACC) as a function of
initial month and lead

[14]: skill=np.zeros((fcst['lead'].size, 12))
for im in tqdm(np.arange(0,12)):

hindcast = HindcastEnsemble(fcst.sel(init=fcst['init.month']==im+1))
hindcast = hindcast.add_observations(verif, 'observations')
skillds = hindcast.verify(metric='acc')
skill[:,im]=skillds['sst'].values

HBox(children=(FloatProgress(value=0.0, max=12.0), HTML(value='')))

Plot the ACC as function of Initial Month and lead-time

28 Chapter 2. Installation



climpred

[15]: plt.pcolormesh(skill,cmap=plt.cm.YlOrRd,vmin=0.0,vmax=1.0)
plt.colorbar()
plt.title('NCEP-CFSv2 Nino3.4 ACC')
plt.xlabel('Initial Month')
plt.ylabel('Lead Time (Months)')

[15]: Text(0, 0.5, 'Lead Time (Months)')
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1. Kirtman, B.P., D. Min, J.M. Infanti, J.L. Kinter, D.A. Paolino, Q. Zhang, H. van den Dool, S. Saha, M.P.
Mendez, E. Becker, P. Peng, P. Tripp, J. Huang, D.G. DeWitt, M.K. Tippett, A.G. Barnston, S. Li, A. Rosati,
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B. Denis, and E.F. Wood, 2014: The North American Multimodel Ensemble: Phase-1 Seasonal-to-Interannual
Prediction; Phase-2 toward Developing Intraseasonal Prediction. Bull. Amer. Meteor. Soc., 95, 585–601,
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Calculate Seasonal ENSO Skill

In this example, we demonstrate:

1. How to remotely access data from the North American Multi-model Ensemble (NMME) hindcast database and
set it up to be used in climpred

2. How to calculate the Anomaly Correlation Coefficient (ACC) using seasonal data

The North American Multi-model Ensemble (NMME)

Further information on NMME is available from Kirtman et al. 2014 and the NMME project website

The NMME public database is hosted on the International Research Institute for Climate and Society (IRI) data server
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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Definitions

Anomalies Departure from normal, where normal is defined as the climatological value based on the average value
for each month over all years.

Nino3.4 An index used to represent the evolution of the El Nino-Southern Oscillation (ENSO). Calculated as the
average sea surface temperature (SST) anomalies in the region 5S-5N; 190-240

[1]: import warnings

import matplotlib.pyplot as plt
import xarray as xr
import pandas as pd
import numpy as np

from climpred import HindcastEnsemble
import climpred

[2]: warnings.filterwarnings("ignore")

[3]: def decode_cf(ds, time_var):
if ds[time_var].attrs['calendar'] == '360':

ds[time_var].attrs['calendar'] = '360_day'
ds = xr.decode_cf(ds, decode_times=True)
return ds

Load the monthly sea surface temperature (SST) hindcast data for the NCEP-CFSv2 model from the data server

[4]: # Get NMME data for NCEP-CFSv2, SST
url = 'http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/NCEP-CFSv2/.HINDCAST/.
→˓MONTHLY/.sst/dods'
fcstds = decode_cf(xr.open_dataset(url, decode_times=False, chunks={'S': 1, 'L': 12}),
→˓ 'S')
fcstds

[4]: <xarray.Dataset>
Dimensions: (L: 10, M: 24, S: 348, X: 360, Y: 181)
Coordinates:

* S (S) object 1982-01-01 00:00:00 ... 2010-12-01 00:00:00

* M (M) float32 1.0 2.0 3.0 4.0 5.0 6.0 ... 20.0 21.0 22.0 23.0 24.0

* X (X) float32 0.0 1.0 2.0 3.0 4.0 ... 355.0 356.0 357.0 358.0 359.0

* L (L) float32 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

* Y (Y) float32 -90.0 -89.0 -88.0 -87.0 -86.0 ... 87.0 88.0 89.0 90.0
Data variables:

sst (S, L, M, Y, X) float32 dask.array<chunksize=(1, 10, 24, 181, 360),
→˓meta=np.ndarray>
Attributes:

Conventions: IRIDL

The NMME data dimensions correspond to the following climpred dimension definitions:
X=lon,L=lead,Y=lat,M=member, S=init. We will rename the dimensions to their climpred names.

[5]: fcstds=fcstds.rename({'S': 'init','L': 'lead','M': 'member', 'X': 'lon', 'Y': 'lat'})

Let’s make sure that the lead dimension is set properly for climpred. NMME data stores leads as 0.5, 1.5, 2.5,
etc, which correspond to 0, 1, 2, . . . months since initialization. We will change the lead to be integers starting with
zero.
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[6]: fcstds['lead']=(fcstds['lead']-0.5).astype('int')

Now we need to make sure that the init dimension is set properly for climpred. For monthly data, the init
dimension must be a xr.cfdateTimeIndex or a pd.datetimeIndex. We convert the init values to pd.
datatimeIndex.

[7]: fcstds['init']=pd.to_datetime(fcstds.init.values.astype(str))
fcstds['init']=pd.to_datetime(fcstds['init'].dt.strftime('%Y%m01 00:00'))

Next, we want to get the verification SST data from the data server

[8]: obsurl='http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.OIv2_SST/.sst/dods'
verifds = decode_cf(xr.open_dataset(obsurl, decode_times=False),'T')
verifds

[8]: <xarray.Dataset>
Dimensions: (T: 405, X: 360, Y: 181)
Coordinates:

* Y (Y) float32 -90.0 -89.0 -88.0 -87.0 -86.0 ... 87.0 88.0 89.0 90.0

* X (X) float32 0.0 1.0 2.0 3.0 4.0 ... 355.0 356.0 357.0 358.0 359.0

* T (T) object 1982-01-16 00:00:00 ... 2015-09-16 00:00:00
Data variables:

sst (T, Y, X) float32 ...
Attributes:

Conventions: IRIDL

Rename the dimensions to correspond to climpred dimensions

[9]: verifds=verifds.rename({'T': 'time','X': 'lon', 'Y': 'lat'})

Convert the time data to be of type pd.datetimeIndex

[10]: verifds['time']=pd.to_datetime(verifds.time.values.astype(str))
verifds['time']=pd.to_datetime(verifds['time'].dt.strftime('%Y%m01 00:00'))
verifds

[10]: <xarray.Dataset>
Dimensions: (lat: 181, lon: 360, time: 405)
Coordinates:

* lat (lat) float32 -90.0 -89.0 -88.0 -87.0 -86.0 ... 87.0 88.0 89.0 90.0

* lon (lon) float32 0.0 1.0 2.0 3.0 4.0 ... 355.0 356.0 357.0 358.0 359.0

* time (time) datetime64[ns] 1982-01-01 1982-02-01 ... 2015-09-01
Data variables:

sst (time, lat, lon) float32 ...
Attributes:

Conventions: IRIDL

Subset the data to 1982-2010

[11]: verifds=verifds.sel(time=slice('1982-01-01','2010-12-01'))
fcstds=fcstds.sel(init=slice('1982-01-01','2010-12-01'))

Calculate the Nino3.4 index for forecast and verification

[12]: fcstnino34=fcstds.sel(lat=slice(-5,5),lon=slice(190,240)).mean(['lat','lon'])
verifnino34=verifds.sel(lat=slice(-5,5),lon=slice(190,240)).mean(['lat','lon'])

fcstclimo = fcstnino34.groupby('init.month').mean('init')

(continues on next page)
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fcstanoms = (fcstnino34.groupby('init.month') - fcstclimo)

verifclimo = verifnino34.groupby('time.month').mean('time')
verifanoms = (verifnino34.groupby('time.month') - verifclimo)

print(fcstanoms)
print(verifanoms)

<xarray.Dataset>
Dimensions: (init: 348, lead: 10, member: 24)
Coordinates:

* lead (lead) int64 0 1 2 3 4 5 6 7 8 9

* member (member) float32 1.0 2.0 3.0 4.0 5.0 ... 20.0 21.0 22.0 23.0 24.0

* init (init) datetime64[ns] 1982-01-01 1982-02-01 ... 2010-12-01
month (init) int64 1 2 3 4 5 6 7 8 9 10 11 ... 2 3 4 5 6 7 8 9 10 11 12

Data variables:
sst (init, lead, member) float32 dask.array<chunksize=(1, 10, 24), meta=np.

→˓ndarray>
<xarray.Dataset>
Dimensions: (time: 348)
Coordinates:

* time (time) datetime64[ns] 1982-01-01 1982-02-01 ... 2010-12-01
month (time) int64 1 2 3 4 5 6 7 8 9 10 11 ... 2 3 4 5 6 7 8 9 10 11 12

Data variables:
sst (time) float32 0.14492226 -0.044160843 ... -1.5685654 -1.6083965

Make Seasonal Averages with center=True and drop NaNs. This means that the first value

[13]: fcstnino34seas=fcstanoms.rolling(lead=3, center=True).mean().dropna(dim='lead')
verifnino34seas=verifanoms.rolling(time=3, center=True).mean().dropna(dim='time')

Create new xr.DataArray with seasonal data

[14]: nleads=fcstnino34seas['lead'][::3].size
fcst=xr.DataArray(fcstnino34seas['sst'][:,::3,:],

coords={'init' : fcstnino34seas['init'],
'lead': np.arange(0,nleads),
'member': fcstanoms['member'],
},

dims=['init','lead','member'])
fcst.name = 'sst'

Assign the units attribute of seasons to the lead dimension

[15]: fcst['lead'].attrs={'units': 'seasons'}

Create a climpred HindcastEnsemble object

[16]: hindcast = HindcastEnsemble(fcst)
hindcast = hindcast.add_observations(verifnino34seas, 'observations')

Compute the Anomaly Correlation Coefficient (ACC) 0, 1, 2, and 3 season lead-times

[17]: skillds = hindcast.verify(metric='acc')
print(skillds)
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<xarray.Dataset>
Dimensions: (lead: 3)
Coordinates:

* lead (lead) int64 0 1 2
Data variables:

sst (lead) float64 0.847 0.7614 0.6779
Attributes:

prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_hindcast
number_of_initializations: 348
number_of_members: 24
metric: pearson_r
comparison: e2o
dim: time
units: None
created: 2020-01-21 11:41:35

Make bar plot of Nino3.4 skill for 0,1, and 2 season lead times

[18]: x=np.arange(0,nleads,1.0).astype(int)
plt.bar(x,skillds['sst'])
plt.xticks(x)
plt.title('NCEP-CFSv2 Nino34 ACC')
plt.xlabel('Lead (Season)')
plt.ylabel('ACC')

[18]: Text(0, 0.5, 'ACC')
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2.4.5 Decadal

Demo of Perfect Model Predictability Functions

This demo demonstrates climpred’s capabilities for a perfect-model framework ensemble simulation.

What’s a perfect-model framework simulation?

A perfect-model framework uses a set of ensemble simulations that are based on a General Circulation Model (GCM)
or Earth System Model (ESM) alone. There is no use of any reanalysis, reconstruction, or data product to initialize the
decadal prediction ensemble. An arbitrary number of members are initialized from perturbed initial conditions (the
“ensemble”), and the control simulation can be viewed as just another member.

How to compare predictability skill score: As no observational data interferes with the random climate evolution
of the model, we cannot use an observation-based reference for computing skill scores. Therefore, we can compare
the members with one another (m2m), against the ensemble mean (m2e), or against the control (m2c). We can also
compare the ensemble mean to the control (e2c). See the comparisons page for more information.

When to use perfect-model frameworks:

• You don’t have a sufficiently long observational record to use as a reference.

• You want to avoid biases between model climatology and reanalysis climatology.

• You want to avoid sensitive reactions of biogeochemical cycles to disruptive changes in ocean physics due to
assimilation.

• You want to delve into process understanding of predictability in a model without outside artifacts.

[1]: import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

import climpred

[2]: warnings.filterwarnings("ignore")

Load sample data

Here we use a subset of ensembles and members from the MPI-ESM-LR (CMIP6 version) esmControl simulation of
an early state. This corresponds to vga0214 from year 3000 to 3300.

1-dimensional output

Our 1D sample output contains datasets of time series of certain spatially averaged area (‘global’, ‘North_Atlantic’)
and temporally averaged period (‘ym’, ‘DJF’, . . . ) for some lead years (1, . . . , 20).

ds: The ensemble dataset of all members (1, . . . , 10), inits (initialization years: 3014, 3023, . . . , 3257), areas,
periods, and lead years.

control: The control dataset with the same areas and periods, as well as the years 3000 to 3299.

[28]: ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D').isel(area=1,period=-1)['tos']
control = climpred.tutorial.load_dataset('MPI-control-1D').isel(area=1,period=-1)['tos
→˓'] (continues on next page)
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(continued from previous page)

[29]: ds['lead'].attrs = {'units': 'years'}

[30]: # Add to climpred PerfectModelEnsemble object.
pm = climpred.PerfectModelEnsemble(ds)
pm = pm.add_control(control)
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (lead, init, member) float32 ...
Control:

tos (time) float32 ...
Uninitialized:

None

We’ll sub-select annual means (‘ym’) of sea surface temperature (‘tos’) in the North Atlantic.

Bootstrapping with Replacement

Here, we bootstrap the ensemble with replacement [Goddard et al. 2013] to compare the initialized ensemble to an
“uninitialized” counterpart and a persistence forecast. The visualization is based on those used in [Li et al. 2016].
The p-value demonstrates the probability that the uninitialized or persistence beats the initialized forecast based on N
bootstrapping with replacement.

[31]: for metric in ['acc', 'rmse']:
bootstrapped = pm.bootstrap(metric=metric, comparison='m2e', iterations=21,

→˓sig=95)
climpred.graphics.plot_bootstrapped_skill_over_leadyear(bootstrapped)
plt.title(' '.join(['SST', 'North Atlantic', 'Annual:', metric]),fontsize=18)
plt.ylabel(metric)
plt.show()
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Computing Skill with Different Comparison Methods

Here, we use compute_perfect_model to compute the Anomaly Correlation Coefficient (ACC) with different
comparison methods. This generates different ACC values by design. See the comparisons page for a description of
the various ways to compute skill scores for a perfect-model framework.

[32]: for c in ['e2c','m2c','m2e','m2m']:
pm.compute_metric(metric='acc', comparison=c)['tos'].plot(label=c)

# Persistence computation for a baseline.
pm.compute_persistence(metric='acc')['tos'].plot(label='persistence', ls=':')
plt.ylabel('ACC')
plt.xticks(np.arange(1,21))
plt.legend()
plt.title('Different forecast-reference comparisons for pearson_r \n lead to
→˓systematically different magnitude of skill score')
plt.show()
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3-dimensional output (maps)

We also have some sample output that contains gridded time series on the curvilinear MPI grid. Our compute functions
(compute_perfect_model, compute_persistence) are indifferent to any dimensions that exist in addition
to init, member, and lead. In other words, the functions are set up to make these computations on a grid, if one
includes lat, lon, lev, depth, etc.

ds3d: The ensemble dataset of members (1, 2, 3, 4), inits (initialization years: 3014, 3061, 3175, 3237), and
lead years (1, 2, 3, 4, 5).

control3d: The control dataset spanning (3000, . . . , 3049).

Note: These are very small subsets of the actual MPI simulations so that we could host the sample output maps on
Github.

[33]: # Sea surface temperature
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D') \

.sel(init=3014) \

.expand_dims('init')['tos']
control3d = climpred.tutorial.load_dataset('MPI-control-3D')['tos']

[34]: ds3d['lead'].attrs = {'units': 'years'}

[35]: # Create climpred PerfectModelEnsemble object.
pm = climpred.PerfectModelEnsemble(ds3d)
pm = pm.add_control(control3d)
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (init, lead, member, y, x) float32 nan nan nan nan ... nan nan nan
Control:

tos (time, y, x) float32 ...
Uninitialized:

None
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Maps of Skill by Lead Year

[36]: pm.compute_metric(metric='rmse', comparison='m2e')['tos'] \
.T.plot(col='lead', robust=True, yincrease=False)

[36]: <xarray.plot.facetgrid.FacetGrid at 0x11d8fffd0>
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[ ]:

Hindcast Predictions of Equatorial Pacific SSTs

In this example, we evaluate hindcasts (retrospective forecasts) of sea surface temperatures in the eastern equatorial
Pacific from CESM-DPLE. These hindcasts are evaluated against a forced ocean–sea ice simulation that initializes the
model.

See the quick start for an analysis of time series (rather than maps) from a hindcast prediction ensemble.

[1]: import warnings

import cartopy.crs as ccrs
(continues on next page)
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import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import climpred
from climpred import HindcastEnsemble

[2]: warnings.filterwarnings("ignore")

We’ll load in a small region of the eastern equatorial Pacific for this analysis example.

[3]: climpred.tutorial.load_dataset()

'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global
→˓mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean
→˓SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs
'GMAO-GEOS-RMM1': daily RMM1 from the GMAO-GEOS-V2p1 model for SubX
'RMM-INTERANN-OBS': observed RMM with interannual variablity included

[4]: hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D')['SST']
recon = climpred.tutorial.load_dataset('FOSI-SST-3D')['SST']
print(hind)

<xarray.DataArray 'SST' (init: 64, lead: 10, nlat: 37, nlon: 26)>
[615680 values with dtype=float32]
Coordinates:

TLAT (nlat, nlon) float64 ...
TLONG (nlat, nlon) float64 ...

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10
TAREA (nlat, nlon) float64 ...

Dimensions without coordinates: nlat, nlon

These two example products cover a small portion of the eastern equatorial Pacific.

[5]: ax = plt.axes(projection=ccrs.Orthographic(-80, 0))
p = ax.pcolormesh(recon.TLONG, recon.TLAT, recon.mean('time'),

transform=ccrs.PlateCarree(), cmap='twilight')
ax.add_feature(cfeature.LAND, color='#d3d3d3')
ax.set_global()

(continues on next page)
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(continued from previous page)

plt.colorbar(p, label='Sea Surface Temperature [degC]')
ax.set(title='Example Data Coverage')

[5]: [Text(0.5, 1.0, 'Example Data Coverage')]

We first need to remove the same climatology that was used to drift-correct the CESM-DPLE. Then we’ll create a
detrended version of our two products to assess detrended predictability.

[6]: # Remove 1964-2014 climatology.
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')

We’ll also detrend the reconstruction over its time dimension and initialized forecast ensemble over init.

[7]: hind = climpred.stats.rm_trend(hind, dim='init')
recon = climpred.stats.rm_trend(recon, dim='time')

climpred requires that lead dimension has an attribute called units indicating what time units the lead is
assocated with. Options are: years,seasons,months,weeks,pentads,days. For the this data, the lead
units are years.

[8]: hind['lead'].attrs['units'] = 'years'

Although functions can be called directly in climpred, we suggest that you use our classes (HindcastEnsemble
and PerfectModelEnsemble) to make analysis code cleaner.

[9]: hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_observations(recon, 'Reconstruction')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, nlat, nlon) float32 -0.29811984 ... 0.5265896
Reconstruction:

SST (time, nlat, nlon) float32 0.2235269 0.22273289 ... 1.3010706
Uninitialized:

None
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Anomaly Correlation Coefficient of SSTs

We can now compute the ACC over all leads and all grid cells.

[10]: predictability = hindcast.verify(metric='acc')
print(predictability)

<xarray.Dataset>
Dimensions: (lead: 10, nlat: 37, nlon: 26, skill: 1)
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10
TAREA (nlat, nlon) float64 3.661e+13 3.661e+13 ... 3.714e+13 3.714e+13
TLONG (nlat, nlon) float64 250.8 251.9 253.1 254.2 ... 276.7 277.8 278.9

* nlat (nlat) int64 0 1 2 3 4 5 6 7 8 9 ... 27 28 29 30 31 32 33 34 35 36

* nlon (nlon) int64 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 24 25

* skill (skill) <U4 'init'
Data variables:

SST (lead, nlat, nlon) float32 0.5079418 0.5048633 ... 0.088374

We use the pval keyword to get associated p-values for our ACCs. We can then mask our final maps based on
𝛼 = 0.05.

[11]: significance = hindcast.verify(metric='p_pval')
significance.coords['TLAT'] = hind['TLAT']
predictability.coords['TLAT'] = hind['TLAT']

[12]: # Mask latitude and longitude by significance for stippling.
siglat = significance.TLAT.where(significance.SST <= 0.05)
siglon = significance.TLONG.where(significance.SST <= 0.05)

[13]: p = predictability.SST.plot.pcolormesh(x='TLONG', y='TLAT',
transform=ccrs.PlateCarree(),
col='lead', col_wrap=5,
subplot_kws={'projection': ccrs.PlateCarree(),

'aspect': 3},
cbar_kwargs={'label': 'Anomaly Correlation

→˓Coefficient'},
vmin=-0.7, vmax=0.7,
cmap='RdYlBu_r')

for i, ax in enumerate(p.axes.flat):
ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
ax.gridlines(alpha=0.3, color='k', linestyle=':')
# Add significance stippling
ax.scatter(siglon.isel(lead=i),

siglat.isel(lead=i),
color='k',
marker='.',
s=1.5,
transform=ccrs.PlateCarree())
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Root Mean Square Error of SSTs

We can also check error in our forecasts, just by changing the metric keyword.

[14]: rmse = hindcast.verify(metric='rmse')
rmse.coords['TLAT'] = hind['TLAT']

[15]: p = rmse.SST.plot.pcolormesh(x='TLONG', y='TLAT',
transform=ccrs.PlateCarree(),
col='lead', col_wrap=5,
subplot_kws={'projection': ccrs.PlateCarree(),

'aspect': 3},
cbar_kwargs={'label': 'Root Mean Square Error (degC)'},
cmap='Purples')

for ax in p.axes.flat:
ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
ax.gridlines(alpha=0.3, color='k', linestyle=':')
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Diagnosing Potential Predictability

This demo demonstrates climpred’s capabilities to diagnose areas containing potentially predictable variations from
a control/verification product alone without requiring multi-member, multi-initialization simulations. This notebook
identifies the slow components of internal variability that indicate potential predictability. Here, we showcase a set of
methods to show regions indicating probabilities for decadal predictability.

[1]: import warnings
%matplotlib inline
import climpred
warnings.filterwarnings("ignore")

[2]: # Sea surface temperature
varname='tos'
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname].load()

Diagnostic Potential Predictability (DPP)

We can first use the [Resplandy 2015] and [Seferian 2018] method for computing the unbiased DPP by not chunking
the time dimension.

[3]: # calculate DPP with m=10
DPP10 = climpred.stats.dpp(control3d, m=10, chunk=False)
# calculate a threshold by random shuffling (based on bootstrapping with replacement
→˓at 95% significance level)
threshold = climpred.bootstrap.dpp_threshold(control3d,

m=10,
chunk=False,
iterations=10,
sig=95)

# plot grid cells where DPP above threshold
DPP10.where(DPP10 > threshold).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap=
→˓'viridis')

[3]: <matplotlib.collections.QuadMesh at 0x11b7e8a58>

Now, we can turn on chunking (the default for this function) to use the [Boer 2004] method.
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[4]: # chunk = True signals the Boer 2004 method
DPP10 = climpred.stats.dpp(control3d, m=10, chunk=True)
threshold = climpred.bootstrap.dpp_threshold(control3d,

m=10,
chunk=True,
iterations=10,
sig=95)

DPP10.where(DPP10>0).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap='viridis')

[4]: <matplotlib.collections.QuadMesh at 0x11b6e22b0>

Variance-Weighted Mean Period

A periodogram is computed based on a control simulation to extract the mean period of variations, which are weighted
by the respective variance. Regions with a high mean period value indicate low-frequency variations with are poten-
tially predictable [Branstator2010].

[5]: vwmp = climpred.stats.varweighted_mean_period(control3d, dim='time')
threshold = climpred.bootstrap.varweighted_mean_period_threshold(control3d,

iterations=10)
vwmp.where(vwmp > threshold).plot(yincrease=False, robust=True)

[5]: <matplotlib.collections.QuadMesh at 0x11b594358>
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Lag-1 Autocorrelation

The lag-1 autocorrelation also indicates where slower modes of variability occur by identifying regions with high
temporal correlation [vonStorch1999].

[6]: # use climpred.bootstrap._bootstrap_func to wrap any stats function
threshold = climpred.bootstrap._bootstrap_func(climpred.stats.autocorr,control3d,'time
→˓',iterations=10)
corr_ef = climpred.stats.autocorr(control3d, dim='time')
corr_ef.where(corr_ef>threshold).plot(yincrease=False, robust=False)

[6]: <matplotlib.collections.QuadMesh at 0x11eba6278>
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Decorrelation time

Taking the lagged correlation further over all lags, the decorrelation time shows the time after which the autocorrelation
fell beyond its e-folding [vonStorch1999]

[7]: threshold = climpred.bootstrap._bootstrap_func(climpred.stats.decorrelation_time,
→˓control3d,'time',iterations=10)
decorr_time = climpred.stats.decorrelation_time(control3d)
decorr_time.where(decorr_time>threshold).plot(yincrease=False, robust=False)

[7]: <matplotlib.collections.QuadMesh at 0x11eff20b8>

Verify diagnostic potential predictability in predictability simulations

Do we find predictability in the areas highlighted above also in perfect-model experiments?

[8]: ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D')[varname].load()
ds3d['lead'].attrs['units'] = 'years'

[9]: bootstrap_skill = climpred.bootstrap.bootstrap_perfect_model(ds3d,
control3d,
metric='rmse',
comparison='m2e',
iterations=10)

[10]: init_skill = bootstrap_skill.sel(results='skill',kind='init')
# p value: probability that random uninitialized forecasts perform better than
→˓initialized
p = bootstrap_skill.sel(results='p',kind='uninit')

[11]: init_skill.where(p<=.05).plot(col='lead', robust=True, yincrease=False)

[11]: <xarray.plot.facetgrid.FacetGrid at 0x11e837e48>
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The metric rmse is negatively oriented, e.g. higher values show large disprepancy between members and hence less
skill.

As suggested by DPP, the variance-weighted mean period and autocorrelation, also in slight perturbed initial values
ensembles there is predictability in the North Atlantic, North Pacific and Southern Ocean in sea-surface temperatures.
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Temporal and spatial smoothing

This demo demonstrates climpred’s capabilities to postprocess decadal prediction output before skill verification.
Here, we showcase a set of methods to smooth out noise in the spatial and temporal domain.

[1]: import warnings
%matplotlib inline
import climpred
warnings.filterwarnings("ignore")

[2]: # Sea surface temperature
varname='tos'
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D')[varname]
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname]

climpred requires that lead dimension has an attribute called units indicating what time units the lead is
assocated with. Options are: years,seasons,months,weeks,pentads,days. For the this data, the lead
units are years.

[3]: ds3d['lead'].attrs={'units': 'years'}
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Temporal smoothing

In order to reduce temporal noise, decadal predictions are recommended to take multi-year averages [Goddard2013].

[4]: ds3d_ts = climpred.smoothing.temporal_smoothing(ds3d,smooth_kws={'lead':4})
control3d_ts = climpred.smoothing.temporal_smoothing(control3d, smooth_kws={'time':4})

[5]: climpred.prediction.compute_perfect_model(ds3d_ts,
control3d_ts,
metric='rmse',
comparison='m2e') \

.plot(col='lead', robust=True, yincrease=False)

[5]: <xarray.plot.facetgrid.FacetGrid at 0x12524c358>

Compare to without smoothing:

[6]: climpred.prediction.compute_perfect_model(ds3d,
control3d,
metric='rmse',
comparison='m2e') \

.plot(col='lead', vmax=.69, yincrease=False)

[6]: <xarray.plot.facetgrid.FacetGrid at 0x124d6f518>

Note: When using temporal_smoothing on compute_hindcast, set rename_dim=False and after calculating the
skill _reset_temporal_axis to get proper labeling of the lead dimension.

[7]: hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D').load()['SST']
reconstruction = climpred.tutorial.load_dataset('FOSI-SST-3D').load()['SST']
# get anomaly reconstruction
reconstruction = reconstruction - reconstruction.mean('time')
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[8]: hind_ts = climpred.smoothing.temporal_smoothing(hind,smooth_kws={'lead':4},rename_
→˓dim=False)
reconstruction_ts = climpred.smoothing.temporal_smoothing(reconstruction, smooth_kws={
→˓'time':4},rename_dim=False)

[9]: # Lose units attribute along the way.
hind_ts["lead"].attrs["units"] = "years"

[10]: s = climpred.prediction.compute_hindcast(hind_ts,
reconstruction_ts,
metric='rmse',
comparison='e2r')

s = climpred.smoothing._reset_temporal_axis(s,smooth_kws={'lead':4})
s.plot(col='lead', robust=True)

[10]: <xarray.plot.facetgrid.FacetGrid at 0x12c404198>

Spatial smoothing

In order to reduce spatial noise, global decadal predictions are recommended to get regridded to a 5 degree longitude
x 5 degree latitude grid as recommended [Goddard2013].

[11]: ds3d_ss = climpred.smoothing.spatial_smoothing_xesmf(ds3d,d_lon_lat_kws={'lon':5, 'lat
→˓':5})
control3d_ss = climpred.smoothing.spatial_smoothing_xesmf(control3d, d_lon_lat_kws={
→˓'lon':5,'lat':5})

Create weight file: bilinear_220x256_36x73.nc
Reuse existing file: bilinear_220x256_36x73.nc

[12]: climpred.prediction.compute_perfect_model(ds3d_ss,
control3d_ss,
metric='rmse',
comparison='m2e') \

.plot(col='lead', robust=True, yincrease=True)

[12]: <xarray.plot.facetgrid.FacetGrid at 0x12d54ae80>

Alternatively, also climpred.smoothing.spatial_smoothing_xrcoarsen aggregates gridcells like
xr_coarsen.
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smooth_goddard2013 creates 4-year means and 5x5 degree regridding as suggested in [Goddard2013].

[13]: climpred.smoothing.smooth_goddard_2013(ds3d).coords

Reuse existing file: bilinear_220x256_36x73.nc

[13]: Coordinates:

* lead (lead) <U3 '1-4' '2-5'

* init (init) int64 3014 3061 3175 3237

* member (member) int64 1 2 3 4

* lon (lon) float64 -180.0 -175.0 -170.0 -165.0 ... 170.0 175.0 180.0

* lat (lat) float64 -83.97 -78.97 -73.97 -68.97 ... 81.03 86.03 91.03

References
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Significance Testing

This demo shows how to handle significance testing from a functional perspective of climpred. In the
future, we will have a robust significance testing framework inplemented with HindcastEnsemble and
PerfectModelEnsemble objects.

[ ]: import xarray as xr
from climpred.tutorial import load_dataset
from climpred.stats import rm_poly
from climpred.prediction import compute_hindcast, compute_perfect_model
from climpred.bootstrap import bootstrap_hindcast, bootstrap_perfect_model
import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

[2]: # load data
v = "SST"
hind = load_dataset("CESM-DP-SST")[v]
hind.lead.attrs["units"] = "years"

hist = load_dataset("CESM-LE")[v]
hist = hist - hist.mean()

obs = load_dataset("ERSST")[v]
obs = obs - obs.mean()

[3]: # align times
hind["init"] = xr.cftime_range(

start=str(hind.init.min().astype("int").values), periods=hind.init.size, freq="YS"
)
hist["time"] = xr.cftime_range(

start=str(hist.time.min().astype("int").values), periods=hist.time.size, freq="YS"
)
obs["time"] = xr.cftime_range(

(continues on next page)
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(continued from previous page)

start=str(obs.time.min().astype("int").values), periods=obs.time.size, freq="YS"
)

[4]: # view the data
hind.sel(lead=1).mean("member").plot(label="CESM-DPLE hindcast lead=1")
hist.mean("member").plot(label="CESM-LE historical")
obs.plot(label="ERSST observations")
plt.legend()
plt.title(f"global mean {v}")
plt.show()

Here we see the strong trend due to climate change. This trend is not linear but rather quadratic. Because we often
aim to prediction natural variations and not specifically the external forcing in initialized predictions, we remove the
2nd-order trend from each dataset along a time axis.

[5]: order = 2
hind = rm_poly(hind, dim="init", order=order)
hist = rm_poly(hist, dim="time", order=order)
obs = rm_poly(obs, dim="time", order=order)
# lead attrs is lost in rm_poly
hind.lead.attrs["units"] = "years"

[6]: hind.sel(lead=1).mean("member").plot(label="CESM-DPLE hindcast lead=1")
hist.mean("member").plot(label="CESM-LE historical")
obs.plot(label="ERSST observations")
plt.legend()
plt.title(f"{order}.-order detrended global mean {v}")
plt.show()
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p value for temporal correlations

For correlation metrics the associated p-value checks whether the correlation is significantly different from zero incor-
porating reduced degrees of freedom due to temporal autocorrelation.

[7]: # level that initialized ensembles are significantly better than other forecast skills
sig = 0.05

[8]: acc = compute_hindcast(hind, obs, metric="pearson_r", comparison="e2r")

acc_p_value = compute_hindcast(hind, obs, metric="pearson_r_eff_p_value", comparison=
→˓"e2r")

[9]: init_color = "indianred"
acc.plot(c=init_color)
acc.where(acc_p_value <= sig).plot(marker="x", c=init_color)

[9]: [<matplotlib.lines.Line2D at 0x1288a69b0>]
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Bootstrapping with replacement

Bootstrapping significance relies on resampling the underlying data with replacement for a large number of iterations
as proposed by the decadal prediction framework of Goddard et al. 2013. We just use 20 iterations here to demonstrate
the functionality.

[10]: %%time
bootstrapped_acc = bootstrap_hindcast(

hind, hist, obs, metric="pearson_r", comparison="e2r", iterations=500, sig=95
)

CPU times: user 1.7 s, sys: 46.4 ms, total: 1.75 s
Wall time: 1.77 s

[11]: bootstrapped_acc.coords

[11]: Coordinates:

* kind (kind) object 'init' 'pers' 'uninit'

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10

* results (results) <U7 'skill' 'p' 'low_ci' 'high_ci'

bootstrap_acc contains for the three different kinds of predictions: - init for the initialized hindcast hind
and describes skill due to initialization and external forcing - uninit for the uninitialized historical hist and
approximates skill from external forcing - pers for the reference forecast computed by baseline_compute,
which defaults to compute_persistence

for different results: - skill: skill values - p: p value - low_ci and high_ci: high and low ends of confidence
intervals based on significance threshold sig

[12]: init_skill = bootstrapped_acc.sel(results="skill", kind="init")
init_better_than_uninit = init_skill.where(

bootstrapped_acc.sel(results="p", kind="uninit") <= sig
)
init_better_than_persistence = init_skill.where(

bootstrapped_acc.sel(results="p", kind="pers") <= sig
)
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[13]: # create a plot by hand
bootstrapped_acc.sel(results="skill", kind="init").plot(

c=init_color, label="initialized"
)
init_better_than_uninit.plot(

c=init_color,
marker="*",
markersize=15,
label="initialized better than uninitialized",

)
init_better_than_persistence.plot(

c=init_color, marker="o", label="initialized better than persistence"
)
bootstrapped_acc.sel(results="skill", kind="uninit").plot(

c="steelblue", label="uninitialized"
)
bootstrapped_acc.sel(results="skill", kind="pers").plot(c="gray", label="persistence")
plt.title(f"ACC Predictability {v}")
plt.legend(loc="lower right")

[13]: <matplotlib.legend.Legend at 0x12a1f4320>

[14]: # use climpred convenience plotting function
from climpred.graphics import plot_bootstrapped_skill_over_leadyear

plot_bootstrapped_skill_over_leadyear(bootstrapped_acc)

[14]: <matplotlib.axes._subplots.AxesSubplot at 0x1264bdc88>
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Field significance

Using esmtools.testing.multipletests to control the false discovery rate (FDR) from the above obtained
p-values in geospatial data.

[15]: v = "tos"
ds3d = load_dataset("MPI-PM-DP-3D")[v]
ds3d.lead.attrs["unit"] = "years"
control3d = load_dataset("MPI-control-3D")[v]

p value for temporal correlations

[16]: # ACC skill
acc3d = compute_perfect_model(ds3d, control3d, metric="pearson_r", comparison="m2e")

# ACC_p_value skill
acc_p_3d = compute_perfect_model(

ds3d, control3d, metric="pearson_r_p_value", comparison="m2e"
)

[17]: # mask init skill where not significant
acc3d.where(acc_p_3d <= sig).plot(col="lead", robust=True, yincrease=False)

[17]: <xarray.plot.facetgrid.FacetGrid at 0x128845b00>
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[18]: # apply FDR Benjamini-Hochberg
# relies on esmtools https://github.com/bradyrx/esmtools
from esmtools.testing import multipletests

_, acc_p_3d_fdr_corr = multipletests(acc_p_3d, method="fdr_bh", alpha=sig)

[19]: # mask init skill where not significant on corrected p-values
acc3d.where(acc_p_3d_fdr_corr <= sig).plot(col="lead", robust=True, yincrease=False)

[19]: <xarray.plot.facetgrid.FacetGrid at 0x122e5d2e8>

[20]: # difference due to FDR Benjamini-Hochberg
(acc_p_3d_fdr_corr - acc_p_3d).plot(col="lead", robust=True, yincrease=False)

[20]: <xarray.plot.facetgrid.FacetGrid at 0x123048dd8>

FDR Benjamini-Hochberg increases the p-value and therefore reduces the number of significant grid cells.

Bootstrapping with replacement

[37]: %%time
bootstrapped_acc_3d = bootstrap_perfect_model(

ds3d, control3d, metric="pearson_r", comparison="m2e", iterations=10
)

CPU times: user 22.2 s, sys: 12.7 s, total: 35 s
Wall time: 42.5 s

[46]: # mask init skill where not significant
bootstrapped_acc_3d.sel(kind="init", results="skill").where(

bootstrapped_acc_3d.sel(kind="uninit", results="p") <= sig
).plot(col="lead", robust=True, yincrease=False)

[46]: <xarray.plot.facetgrid.FacetGrid at 0x141955400>
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[66]: # apply FDR Benjamini-Hochberg
_, bootstrapped_acc_p_3d_fdr_corr = multipletests(

bootstrapped_acc_3d.sel(kind="uninit", results="p"), method="fdr_bh", alpha=sig
)

[75]: # mask init skill where not significant on corrected p-values
bootstrapped_acc_3d.sel(kind="init", results="skill").where(

bootstrapped_acc_p_3d_fdr_corr <= sig*2
).plot(col="lead", robust=True, yincrease=False)

[75]: <xarray.plot.facetgrid.FacetGrid at 0x157e438d0>

[76]: # difference due to FDR Benjamini-Hochberg
(

bootstrapped_acc_p_3d_fdr_corr - bootstrapped_acc_3d.sel(kind="uninit", results="p
→˓")
).plot(col="lead", robust=True, yincrease=False)

[76]: <xarray.plot.facetgrid.FacetGrid at 0x158b34048>

FDR Benjamini-Hochberg increases the p-value and therefore reduces the number of significant grid cells.

User Guide

• Setting Up Your Dataset

• PredictionEnsemble Objects

• Verification Alignment

• Metrics
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• Comparisons

• Significance Testing

• Prediction Terminology

• Reference Forecasts

2.5 Setting Up Your Dataset

climpred relies on a consistent naming system for xarray dimensions. This allows things to run more easily
under-the-hood.

Prediction ensembles are expected at the minimum to contain dimensions init and lead. init is the initialization
dimension, that relays the time steps at which the ensemble was initialized. init must be of type int`, ``pd.
DatetimeIndex, or xr.cftimeIndex. If init is of type int, it is assumed to be annual data. A user warning
is issues when this assumption is made. lead is the lead time of the forecasts from initialization. The units for the
lead dimension must be specified in as an attribute. Valid options are years, seasons, months, weeks,
pentads, days. Another crucial dimension is member, which holds the various ensemble members. Any addi-
tional dimensions will be passed through climpred without issue: these could be things like lat, lon, depth,
etc.

Check out the demo to setup a climpred-ready prediction ensemble from your own data or via intake-esm from
CMIP DCPP.

Verification products are expected to contain the time dimension at the minimum. For best use of climpred, their
time dimension should cover the full length of init and the same calendar type as the accompanying prediction
ensemble, if possible. The time dimension must be of type int, pd.DatetimeIndex or xr.cftimeIndex.
time dimension of type int is assumed to be annual data. A user warning is issued when this assumption is made.
These products can also include additional dimensions, such as lat, lon, depth, etc.

See the below table for a summary of dimensions used in climpred, and data types that climpred supports for
them.

Short
Name

Types Long Name Attribute(s)

lead int lead timestep after initial-
ization, [init]

units (str) [years, seasons, months,
weeks, pentads, days]

init int, pd.DatetimeIndex,
xr.CFTimeIndex

initialization: start date of
experiment

None

member int, str ensemble member None

2.6 PredictionEnsemble Objects

One of the major features of climpred is our objects that are based upon the PredictionEnsemble class. We
supply users with a HindcastEnsemble and PerfectModelEnsemble object. We encourage users to take
advantage of these high-level objects, which wrap all of our core functions. These objects don’t comprehensively
cover all functions yet, but eventually we’ll deprecate direct access to the function calls in favor of the lightweight
objects.

Briefly, we consider a HindcastEnsemble to be one that is initialized from some observational-like product (e.g.,
assimilated data, reanalysis products, or a model reconstruction). Thus, this object is built around comparing the
initialized ensemble to various observational products. In contrast, a PerfectModelEnsemble is one that is
initialized off of a model control simulation. These forecasting systems are not meant to be compared directly to
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real-world observations. Instead, they provide a contained model environment with which to theoretically study the
limits of predictability. You can read more about the terminology used in climpred here.

Let’s create a demo object to explore some of the functionality and why they are much smoother to use than direct
function calls.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
from climpred.tutorial import load_dataset
import climpred

We can pull in some sample data that is packaged with climpred.

[2]: load_dataset()

'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global
→˓mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean
→˓SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs
'GMAO-GEOS-RMM1': daily RMM1 from the GMAO-GEOS-V2p1 model for SubX
'RMM-INTERANN-OBS': observed RMM with interannual variablity included

2.6.1 HindcastEnsemble

We’ll start out with a HindcastEnsemble demo, followed by a PerfectModelEnsemble case.

[3]: hind = climpred.tutorial.load_dataset('CESM-DP-SST') # CESM-DPLE hindcast ensemble
→˓output.
obs = climpred.tutorial.load_dataset('ERSST') # ERSST observations.
recon = climpred.tutorial.load_dataset('FOSI-SST') # Reconstruction simulation that
→˓initialized CESM-DPLE.

We need to add a “units” attribute to the hindcast ensemble so that climpred knows how to interpret the lead units.

[4]: hind["lead"].attrs["units"] = "years"

CESM-DPLE was drift-corrected prior to uploading the output, so we just need to subtract the climatology over the
same period for our other products before building the object.
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[5]: obs = obs - obs.sel(time=slice(1964, 2014)).mean('time')
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')

Now we instantiate the HindcastEnsemble object and append all of our products to it.

[6]: hindcast = HindcastEnsemble(hind) # Instantiate object by passing in our initialized
→˓ensemble.
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
Verification Data:

None
Uninitialized:

None

/Users/ribr5703/miniconda3/envs/climpred-dev/lib/python3.6/site-packages/climpred/
→˓utils.py:141: UserWarning: Assuming annual resolution due to numeric inits. Change
→˓init to a datetime if it is another resolution.
'Assuming annual resolution due to numeric inits. '

Now we just use the add_ methods to attach other objects. See the API here. Note that we strive to make our
conventions follow those of ‘‘xarray‘‘’s. For example, we don’t allow inplace operations. One has to run hindcast
= hindcast.add_observations(...) to modify the object upon later calls rather than just hindcast.
add_observations(...).

[7]: hindcast = hindcast.add_observations(recon, 'reconstruction')
hindcast = hindcast.add_observations(obs, 'ERSST')

[8]: print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
reconstruction:

SST (time) float64 -0.05064 -0.0868 -0.1396 ... 0.3023 0.3718 0.292
ERSST:

SST (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:

None

You can apply most standard xarray functions directly to our objects! climpred will loop through the objects and
apply the function to all applicable xarray.Datasets within the object. If you reference a dimension that doesn’t
exist for the given xarray.Dataset, it will ignore it. This is useful, since the initialized ensemble is expected to
have dimension init, while other products have dimension time (see more here).

Let’s start by taking the ensemble mean of the initialized ensemble so our metric computations don’t have to take the
extra time on that later. I’m just going to use deterministic metrics here, so we don’t need the individual ensemble
members. Note that above our initialized ensemble had a member dimension, and now it is reduced.

[9]: hindcast = hindcast.mean('member')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead) float64 -0.2121 -0.1637 -0.1206 ... 0.7286 0.7532
reconstruction:

(continues on next page)
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SST (time) float64 -0.05064 -0.0868 -0.1396 ... 0.3023 0.3718 0.292
ERSST:

SST (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:

None

We still have a trend in all of our products, so we could also detrend them as well.

[10]: hindcast.get_observations('reconstruction').SST.plot()

[10]: [<matplotlib.lines.Line2D at 0x124152f60>]

[11]: from scipy.signal import detrend

I’m going to transpose this first since my initialized ensemble has dimensions ordered (init, lead) and scipy.
signal.detrend is applied over the last axis. I’d like to detrend over the init dimension rather than lead
dimension.

[12]: hindcast = hindcast.transpose().apply(detrend)

And it looks like everything got detrended by a linear fit! That wasn’t too hard.

[13]: hindcast.get_observations('reconstruction').SST.plot()

[13]: [<matplotlib.lines.Line2D at 0x124618518>]
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[14]: hindcast.get_initialized().isel(lead=0).SST.plot()

[14]: [<matplotlib.lines.Line2D at 0x1243d3668>]

Now that we’ve done our pre-processing, let’s quickly compute some metrics. Check the metrics page here for all
the keywords you can use. The API is currently pretty simple for the HindcastEnsemble. You can essentially
compute standard skill metrics and a reference persistence forecast.

If you just pass a metric, it’ll compute the skill metric against all observations and return a dictionary with keys of the
names the user entered when adding them.

[15]: hindcast.verify(metric='mse')

[15]: {'reconstruction': <xarray.Dataset>
Dimensions: (lead: 10, skill: 1)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* skill (skill) <U4 'init'
Data variables:

(continues on next page)
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SST (lead) float64 0.004468 0.007589 0.008514 ... 0.01054 0.01261,
'ERSST': <xarray.Dataset>
Dimensions: (lead: 10, skill: 1)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* skill (skill) <U4 'init'
Data variables:

SST (lead) float64 0.003911 0.005762 0.006707 ... 0.008239 0.009568}

One can also directly call individual observations to compare to. Here we leverage xarray’s plotting method to
compute Mean Absolute Error and the Anomaly Correlation Coefficient for both our observational products, as well
as the equivalent metrics computed for persistence forecasts for each of those metrics.

[16]: import numpy as np

plt.style.use('ggplot')
plt.style.use('seaborn-talk')

RECON_COLOR = '#1b9e77'
OBS_COLOR = '#7570b3'

f, axs = plt.subplots(nrows=2, figsize=(8, 8), sharex=True)

for ax, metric in zip(axs.ravel(), ['mae', 'acc']):
handles = []
for product, color in zip(['reconstruction', 'ERSST'], [RECON_COLOR, OBS_COLOR]):

result = hindcast.verify(product, metric=metric, reference='persistence')
p1, = result.sel(skill='init').SST.plot(ax=ax,

marker='o',
color=color,
label=product,
linewidth=2)

p2, = result.sel(skill='persistence').SST.plot(ax=ax,
color=color,
linestyle='--',
label=product + ' persistence')

handles.append(p1)
handles.append(p2)

ax.set_title(metric.upper())

axs[0].set_ylabel('Mean Error [degC]')
axs[1].set_ylabel('Correlation Coefficient')
axs[0].set_xlabel('')
axs[1].set_xlabel('Lead Year')
axs[1].set_xticks(np.arange(10)+1)

# matplotlib/xarray returning weirdness for the legend handles.
handles = [i.get_label() for i in handles]

# a little trick to put the legend on the outside.
plt.legend(handles, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)

plt.suptitle('CESM Decadal Prediction Large Ensemble Global SSTs', fontsize=16)
plt.show()
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2.6.2 PerfectModelEnsemble

We’ll now play around a bit with the PerfectModelEnsemble object, using sample data from the MPI perfect
model configuration.

[17]: from climpred import PerfectModelEnsemble

[18]: ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D') # initialized ensemble from MPI
control = climpred.tutorial.load_dataset('MPI-control-1D') # base control run that
→˓initialized it

[19]: ds["lead"].attrs["units"] = "years"

[20]: print(ds)

<xarray.Dataset>
Dimensions: (area: 3, init: 12, lead: 20, member: 10, period: 5)
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* period (period) object 'DJF' 'JJA' 'MAM' 'SON' 'ym'

* area (area) object 'global' 'North_Atlantic' 'North_Atlantic_SPG'

* init (init) int64 3014 3023 3045 3061 3124 ... 3175 3178 3228 3237 3257

* member (member) int64 0 1 2 3 4 5 6 7 8 9

(continues on next page)
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Data variables:
tos (period, lead, area, init, member) float32 ...
sos (period, lead, area, init, member) float32 ...
AMO (period, lead, area, init, member) float32 ...

[21]: pm = climpred.PerfectModelEnsemble(ds)
pm = pm.add_control(control)
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (period, lead, area, init, member) float32 ...
sos (period, lead, area, init, member) float32 ...
AMO (period, lead, area, init, member) float32 ...

Control:
tos (period, time, area) float32 ...
sos (period, time, area) float32 ...
AMO (period, time, area) float32 ...

Uninitialized:
None

/Users/ribr5703/miniconda3/envs/climpred-dev/lib/python3.6/site-packages/climpred/
→˓utils.py:141: UserWarning: Assuming annual resolution due to numeric inits. Change
→˓init to a datetime if it is another resolution.
'Assuming annual resolution due to numeric inits. '

Our objects are carrying sea surface temperature (tos), sea surface salinity (sos), and the Atlantic Multidecadal
Oscillation index (AMO). Say we just want to look at skill metrics for temperature and salinity over the North Atlantic
in JJA. We can just call a few easy xarray commands to filter down our object.

[22]: pm = pm.drop('AMO').sel(area='North_Atlantic', period='JJA')

Now we can easily compute for a host of metrics. Here I just show a number of deterministic skill metrics comparing
all individual members to the initialized ensemble mean. See comparisons for more information on the comparison
keyword.

[23]: METRICS = ['mse', 'rmse', 'mae', 'acc',
'nmse', 'nrmse', 'nmae', 'msss']

result = []
for metric in METRICS:

result.append(pm.compute_metric(metric, comparison='m2e'))

result = xr.concat(result, 'metric')
result['metric'] = METRICS

# Leverage the `xarray` plotting wrapper to plot all results at once.
result.to_array().plot(col='metric',

hue='variable',
col_wrap=4,
sharey=False,
sharex=True)

[23]: <xarray.plot.facetgrid.FacetGrid at 0x124540940>

2.6. PredictionEnsemble Objects 65

comparisons.html


climpred

It is useful to compare the initialized ensemble to an uninitialized run. See terminology for a description on “uninitial-
ized” simulations. This gives us information about how initializations lead to enhanced predictability over knowledge
of external forcing, whereas a comparison to persistence just tells us how well a dynamical forecast simulation does
in comparison to a naive method. We can use the generate_uninitialized() method to bootstrap the control
run and create a pseudo-ensemble that approximates what an uninitialized ensemble would look like.

[24]: pm = pm.generate_uninitialized()
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (lead, init, member) float32 13.464135 13.641711 ... 13.568891
sos (lead, init, member) float32 33.183903 33.146976 ... 33.25843

Control:
tos (time) float32 13.499312 13.742612 ... 13.076672 13.465583
sos (time) float32 33.232624 33.188156 33.201694 ... 33.16359 33.18352

Uninitialized:
tos (lead, init, member) float32 13.302329 13.270309 ... 13.211761
sos (lead, init, member) float32 33.223557 33.18921 ... 33.17692

[25]: pm = pm.drop('tos') # Just assess for salinity.

Here I plot the ACC for the initialized, uninitialized, and persistence forecasts for North Atlantic sea surface salinity
in JJA. I add circles to the lines if the correlations are statistically significant for 𝑝 <= 0.05.

[26]: # ACC for initialized ensemble
acc = pm.compute_metric('acc')
acc.sos.plot(color='red')
acc.where(pm.compute_metric('p_pval') <= 0.05).sos.plot(marker='o', linestyle='None',
→˓color='red', label='initialized')

# ACC for 'uninitialized' ensemble
# acc = pm.compute_uninitialized('acc')
# acc.sos.plot(color='gray')
# acc.where(pm.compute_uninitialized('p_pval') <= 0.05).sos.plot(marker='o',
→˓linestyle='None', color='gray', label='uninitialized')

# ACC for persistence forecast
(continues on next page)
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acc = pm.compute_persistence('acc')
acc.sos.plot(color='k', linestyle='--')
acc.where(pm.compute_persistence('p_pval') <= 0.05).sos.plot(marker='o', linestyle=
→˓'None', color='k', label='persistence')

plt.legend()

[26]: <matplotlib.legend.Legend at 0x12dccbe80>

2.7 Verification Alignment

A forecast is verified by comparing a set of initializations at a given lead to observations over some window of time.
However, there are a few ways to decide which initializations or verification window to use in this alignment.

One can pass the keyword alignment=... to any hindcast compute functions (e.g., HindcastEnsemble.verify,
compute_hindcast, compute_persistence) to change the behavior for aligning forecasts with the verification product.
Note that the alignment decision only matters for hindcast experiments. Perfect-model experiments are perfectly
time-aligned by design, equating to our same_inits keyword.

The available keywords for hindcast alignment are:

• 'same_inits': Use a common set of initializations that verify across all leads. This ensures that there is no
bias in the result due to the state of the system for the given initializations.

• 'same_verifs' (default): Use a common verification window across all leads. This ensures that there is no
bias in the result due to the observational period being verified against.
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• 'maximize': Use all available initializations at each lead that verify against the observations provided. This
changes both the set of initializations and the verification window used at each lead.

[1]: from climpred import HindcastEnsemble
from climpred.tutorial import load_dataset

import esmtools as et

import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
%matplotlib inline

import numpy as np

import warnings
# Supress datetime warnings for this page.
warnings.filterwarnings("ignore")

[2]: def create_hindcast_object():
"""Loads in example data from CESM-DPLE and ERSST observations and
bias-corrects and detrends."""
hind = load_dataset('CESM-DP-SST')['SST']
verif = load_dataset('ERSST')['SST']

# Bias-correct over same period as CESM-DPLE.
verif = verif - verif.sel(time=slice(1964, 2014)).mean('time')

# Remove linear trend.
hind_dt = et.stats.rm_trend(hind, 'init')
verif_dt = et.stats.rm_trend(verif, 'time')

# Create `HindcastEnsemble` object from `climpred`.
hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_observations(verif, 'ERSST')
hindcast_dt = HindcastEnsemble(hind_dt)
hindcast_dt = hindcast_dt.add_observations(verif_dt, 'ERSST')
return hindcast, hindcast_dt

[3]: hindcast, hindcast_dt = create_hindcast_object()

The user can simply change the alignment strategy by passing in the keyword alignment=.... Note that the choice
of alignment strategy changes the lead-dependent metric results.

[4]: f, axs = plt.subplots(ncols=2, figsize=(12,4), sharex=True)
for alignment in ['same_inits', 'same_verifs', 'maximize']:

hindcast.verify(metric='acc', alignment=alignment)['SST'] \
.plot(label=alignment, ax=axs[0])

hindcast_dt.verify(metric='acc', alignment=alignment)['SST'] \
.plot(label=alignment, ax=axs[1])

axs[0].legend()
axs[1].legend()
axs[0].set(ylabel='anomaly\ncorrelation coefficient',

xlabel='lead year',
xticks=np.arange(1, 11),
title='SST with trend')

axs[1].set(ylabel='anomaly\ncorrelation coefficient',
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xlabel='lead year',
title='detrended SST')

f.suptitle('Verification with Different Alignment Methods',
fontsize=14, weight='bold')

plt.subplots_adjust(top=0.85)

plt.show()

These alignment keywords also extend to compute_persistence, which uses the identical set of initializations
(and alignment strategy) in its computation. Below, the dashed lines represent the persistence forecast for the given
alignment strategy, while the solid lines denote the initialized anomaly correlation coefficient (as in the above plots).

[5]: COLORS = ['#008FD5', '#FC4F30', '#E5AE38']
f, axs = plt.subplots()

for alignment, color in zip(['same_inits', 'same_verifs', 'maximize'], COLORS):
result = hindcast_dt.verify(metric='acc', reference='persistence',

→˓alignment=alignment)
result.sel(skill='init').SST.plot(label=alignment, color=color)
result.sel(skill='persistence').SST.plot(linestyle='--', color=color, lw=3)

axs.set(ylabel='anomaly\ncorrelation coefficient',
xlabel='lead year',
xticks=np.arange(1, 11),
title='Detrended SST Verification with Persistence')

plt.legend()
plt.show()
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We’ll be using the same example data as above. climpred will be aligning the following initialization and verifica-
tion dates:

[6]: print(f'initialization dates: \n{hindcast.get_initialized().init.to_index()}')

initialization dates:
CFTimeIndex([1954-01-01 00:00:00, 1955-01-01 00:00:00, 1956-01-01 00:00:00,

1957-01-01 00:00:00, 1958-01-01 00:00:00, 1959-01-01 00:00:00,
1960-01-01 00:00:00, 1961-01-01 00:00:00, 1962-01-01 00:00:00,
1963-01-01 00:00:00, 1964-01-01 00:00:00, 1965-01-01 00:00:00,
1966-01-01 00:00:00, 1967-01-01 00:00:00, 1968-01-01 00:00:00,
1969-01-01 00:00:00, 1970-01-01 00:00:00, 1971-01-01 00:00:00,
1972-01-01 00:00:00, 1973-01-01 00:00:00, 1974-01-01 00:00:00,
1975-01-01 00:00:00, 1976-01-01 00:00:00, 1977-01-01 00:00:00,
1978-01-01 00:00:00, 1979-01-01 00:00:00, 1980-01-01 00:00:00,
1981-01-01 00:00:00, 1982-01-01 00:00:00, 1983-01-01 00:00:00,
1984-01-01 00:00:00, 1985-01-01 00:00:00, 1986-01-01 00:00:00,
1987-01-01 00:00:00, 1988-01-01 00:00:00, 1989-01-01 00:00:00,
1990-01-01 00:00:00, 1991-01-01 00:00:00, 1992-01-01 00:00:00,
1993-01-01 00:00:00, 1994-01-01 00:00:00, 1995-01-01 00:00:00,
1996-01-01 00:00:00, 1997-01-01 00:00:00, 1998-01-01 00:00:00,
1999-01-01 00:00:00, 2000-01-01 00:00:00, 2001-01-01 00:00:00,
2002-01-01 00:00:00, 2003-01-01 00:00:00, 2004-01-01 00:00:00,
2005-01-01 00:00:00, 2006-01-01 00:00:00, 2007-01-01 00:00:00,
2008-01-01 00:00:00, 2009-01-01 00:00:00, 2010-01-01 00:00:00,
2011-01-01 00:00:00, 2012-01-01 00:00:00, 2013-01-01 00:00:00,
2014-01-01 00:00:00, 2015-01-01 00:00:00, 2016-01-01 00:00:00,
2017-01-01 00:00:00],

dtype='object', name='init')

[7]: print(f'verification dates: \n{hindcast.get_observations().time.to_index()}')

verification dates:
CFTimeIndex([1955-01-01 00:00:00, 1956-01-01 00:00:00, 1957-01-01 00:00:00,

1958-01-01 00:00:00, 1959-01-01 00:00:00, 1960-01-01 00:00:00,
1961-01-01 00:00:00, 1962-01-01 00:00:00, 1963-01-01 00:00:00,
1964-01-01 00:00:00, 1965-01-01 00:00:00, 1966-01-01 00:00:00,
1967-01-01 00:00:00, 1968-01-01 00:00:00, 1969-01-01 00:00:00,
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1970-01-01 00:00:00, 1971-01-01 00:00:00, 1972-01-01 00:00:00,
1973-01-01 00:00:00, 1974-01-01 00:00:00, 1975-01-01 00:00:00,
1976-01-01 00:00:00, 1977-01-01 00:00:00, 1978-01-01 00:00:00,
1979-01-01 00:00:00, 1980-01-01 00:00:00, 1981-01-01 00:00:00,
1982-01-01 00:00:00, 1983-01-01 00:00:00, 1984-01-01 00:00:00,
1985-01-01 00:00:00, 1986-01-01 00:00:00, 1987-01-01 00:00:00,
1988-01-01 00:00:00, 1989-01-01 00:00:00, 1990-01-01 00:00:00,
1991-01-01 00:00:00, 1992-01-01 00:00:00, 1993-01-01 00:00:00,
1994-01-01 00:00:00, 1995-01-01 00:00:00, 1996-01-01 00:00:00,
1997-01-01 00:00:00, 1998-01-01 00:00:00, 1999-01-01 00:00:00,
2000-01-01 00:00:00, 2001-01-01 00:00:00, 2002-01-01 00:00:00,
2003-01-01 00:00:00, 2004-01-01 00:00:00, 2005-01-01 00:00:00,
2006-01-01 00:00:00, 2007-01-01 00:00:00, 2008-01-01 00:00:00,
2009-01-01 00:00:00, 2010-01-01 00:00:00, 2011-01-01 00:00:00,
2012-01-01 00:00:00, 2013-01-01 00:00:00, 2014-01-01 00:00:00,
2015-01-01 00:00:00],

dtype='object', name='time')

We use the standard python library logging to log the initializations and verification dates used in alignment at each
lead. The user can check these logs to ensure that the expected initializations and verification dates are being retained.
See the logging section on this page for more details.

[8]: import logging
# Print log to screen with initializations and verification dates.
logger = logging.getLogger()
logger.setLevel(logging.INFO)

2.7.1 Same Verification Dates

alignment='same_verifs' (default)

The same_verifs alignment finds a set of verification dates that can be verified against over all leads. It also
requires that the verification data have an observation at each initialization being retained. This is so that the reference
forecast, such as persistence, uses an identical set of initializations in deriving its forecast. Notice in the logger output
that a common set of verification dates spanning 1965-2015 are used, while the initialization window slides one year
at each lead.

References:

1. Boer, George J., et al. “The decadal climate prediction project (DCPP) contribution to CMIP6.” Geoscientific
Model Development (Online) 9.10 (2016). [https://doi.org/10.5194/gmd-9-3751-2016]

2. Hawkins, Ed, et al. “The interpretation and use of biases in decadal climate predictions.” Journal of climate 27.8
(2014): 2931-2947. [https://doi.org/10.1175/JCLI-D-13-00473.1]

3. Smith, Doug M., Rosie Eade, and Holger Pohlmann. “A comparison of full-field and anomaly initialization
for seasonal to decadal climate prediction.” Climate dynamics 41.11-12 (2013): 3325-3338. [https://doi.org/10.
1007/s00382-013-1683-2]

[9]: skill = hindcast.verify(alignment='same_verifs')

INFO:root:lead: 01 | inits: 1963-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 02 | inits: 1962-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 03 | inits: 1961-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

(continues on next page)
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INFO:root:lead: 04 | inits: 1960-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 05 | inits: 1959-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 06 | inits: 1958-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 07 | inits: 1957-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 08 | inits: 1956-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 09 | inits: 1955-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

Here, we include a figure of a simpler alignment case with annual initializations from 1990 through 2000 and three
lead years. We verify this hypothetical initialized ensemble against a product that spans 1995 through 2002.

Two conditions must be met when selecting the verification window:

1. There must be a union between the initialization dates and verification dates. This is represented by the black
vertical lines in the top panel below, which leave out 1990-1994 initializations since there aren’t observations
before 1995. This logic exists so that any reference forecasts (e.g. a persistence forecast) use an identical set of
initializations as the initialized forecast.

2. A given verification time must exist across all leads. This is to ensure that at each lead, the entire set of chosen
verification dates can be verified against. This is represented by diagonals in the top panel below (and the dashed
black lines). Without the first stipulation, this would set the verification window at 1995-2001.

This leaves us with a verification window of [1998, 1999, 2000, 2001] which can be verified against across all leads
(and have a complimentary persistence forecast with the same set of initializations used at each lead).
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alignment='same_inits'
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The same_inits alignment finds a set of initializations that can verify over all leads. It also requires that the
verification data have an observation at each initialization being retained. This is so that the reference forecast, such as
persistence, uses an identical set of initializations in deriving its forecast. Notice in the logger output that a common
set of initializations spanning 1955-2005 are used, while the verification window slides one year at each lead.

[10]: skill = hindcast.verify(alignment='same_inits')

INFO:root:lead: 01 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1955-01-
→˓01 00:00:00-2006-01-01 00:00:00
INFO:root:lead: 02 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1956-01-
→˓01 00:00:00-2007-01-01 00:00:00
INFO:root:lead: 03 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1957-01-
→˓01 00:00:00-2008-01-01 00:00:00
INFO:root:lead: 04 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1958-01-
→˓01 00:00:00-2009-01-01 00:00:00
INFO:root:lead: 05 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1959-01-
→˓01 00:00:00-2010-01-01 00:00:00
INFO:root:lead: 06 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1960-01-
→˓01 00:00:00-2011-01-01 00:00:00
INFO:root:lead: 07 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1961-01-
→˓01 00:00:00-2012-01-01 00:00:00
INFO:root:lead: 08 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1962-01-
→˓01 00:00:00-2013-01-01 00:00:00
INFO:root:lead: 09 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1963-01-
→˓01 00:00:00-2014-01-01 00:00:00
INFO:root:lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

Here, we include a figure of a simpler alignment case with annual initializations from 1990 through 2000 and three
lead years. We verify this hypothetical initialized ensemble against a product that spans 1995 through 2002.

Two conditions must be met to retain the initializations for verification:

1. There must be an observation in the verification data for the given initialization. In combination with (1),
initializations 1990 through 1994 are left out. This logic exists so that any reference forecast (e.g. a persistence
forecast) use an identical set of initializations as the initialized forecast.

2. All forecasted times (i.e., initialization + lead year) for a given initialization must be contained in the verification
data. Schematically, this means that there must be a union between a column in the top panel and the time series
in the bottom panel. The 2000 initialization below is left out since the verification data does not contain 2003.

This leaves us with initializations [1995, 1996, . . . , 1999] which can verify against the observations at all three lead
years.
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2.7.3 Maximize Degrees of Freedom

alignment='maximize'

The maximize alignment verifies against every available observation at each lead. This means that both the ini-
tializations and verification dates could be different at each lead. It also requires that the verification data have an
observation at each initialization being retained. This is so that the reference forecast, such as persistence, uses an
identical set of initializations in deriving its forecast.

Notice in the logger output that the initialization window shrinks from 1955-2014 (N=60) at lead year 1 to 1955-2005
(N=51) at lead year 10. Similarly, the verification window spans 1956-2015 at lead year 1 and 1965-2015 at lead year
10. However, using the other two alignment strategies (same_verifs and same_inits), there is a fixed N=51 to
ensure constant initializations or verification dates, while the number of samples is extended to as high as 60 with this
alignment strategy.

References:

1. Yeager, S. G., et al. “Predicting near-term changes in the Earth System: A large ensemble of initialized decadal
prediction simulations using the Community Earth System Model.” Bulletin of the American Meteorological
Society 99.9 (2018): 1867-1886. [https://doi.org/10.1175/BAMS-D-17-0098.1]

[11]: skill = hindcast.verify(alignment='maximize')

INFO:root:lead: 01 | inits: 1954-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1955-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 02 | inits: 1954-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1956-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 03 | inits: 1954-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1957-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 04 | inits: 1954-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1958-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 05 | inits: 1954-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1959-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 06 | inits: 1954-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1960-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 07 | inits: 1954-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1961-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 08 | inits: 1954-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1962-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 09 | inits: 1954-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1963-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

Here, we include a figure of a simpler alignment case with annual initializations from 1990 through 2000 and three
lead years. We verify this hypothetical initialized ensemble against a product that spans 1995 through 2002.

Two conditions must be met when selecting initializations/verifications at each lead:

1. There must be a union between the initialization dates and verification dates. This is represented by the black
vertical lines in the top panel below, which leave out 1990-1994 initializations since there aren’t observations
before 1995. This logic exists so that any reference forecasts (e.g. a persistence forecast) use an identical set of
initializations as the initialized forecast.

2. The selected initializations must verify with the provided observations for the given lead. This is shown by the
hatching in the figure below. The 2000 initialization is left out at lead year 3 since there is no observation for
2003.

This leaves us with the following alignment:

• LY1 initializations: [1995, 1996, 1997, 1998, 1999, 2000]
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• LY2 initializations: [1995, 1996, 1997, 1998, 1999, 2000]

• LY3 initializations: [1995, 1996, 1997, 1998, 1999]
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2.7.4 Logging

climpred uses the standard library logging to store the initializations and verification dates used at each lead for
a given computation. This is used internally for testing, but more importantly, can be activated by the user so they can
be sure of how computations are being done.

To see the log interactively, e.g. while working in Jupyter notebooks or on the command line use the following:

[12]: import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)

[13]: skill = hindcast.verify(alignment='same_verifs')

INFO:root:lead: 01 | inits: 1963-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 02 | inits: 1962-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 03 | inits: 1961-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 04 | inits: 1960-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 05 | inits: 1959-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 06 | inits: 1958-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 07 | inits: 1957-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 08 | inits: 1956-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 09 | inits: 1955-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

The INFO level reports the minimum and maximum bounds for initializations and verification dates. To see every
single initialization and verification date used, set the level to DEBUG.

[14]: logger.setLevel(logging.DEBUG)

[15]: skill = hindcast.isel(lead=slice(0, 2)).verify(alignment='same_verifs')

INFO:root:lead: 01 | inits: 1955-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1956-01-
→˓01 00:00:00-2015-01-01 00:00:00
DEBUG:root:
inits: ['1955-1-1', '1956-1-1', '1957-1-1', '1958-1-1', '1959-1-1', '1960-1-1', '1961-
→˓1-1', '1962-1-1', '1963-1-1', '1964-1-1', '1965-1-1', '1966-1-1', '1967-1-1', '1968-
→˓1-1', '1969-1-1', '1970-1-1', '1971-1-1', '1972-1-1', '1973-1-1', '1974-1-1', '1975-
→˓1-1', '1976-1-1', '1977-1-1', '1978-1-1', '1979-1-1', '1980-1-1', '1981-1-1', '1982-
→˓1-1', '1983-1-1', '1984-1-1', '1985-1-1', '1986-1-1', '1987-1-1', '1988-1-1', '1989-
→˓1-1', '1990-1-1', '1991-1-1', '1992-1-1', '1993-1-1', '1994-1-1', '1995-1-1', '1996-
→˓1-1', '1997-1-1', '1998-1-1', '1999-1-1', '2000-1-1', '2001-1-1', '2002-1-1', '2003-
→˓1-1', '2004-1-1', '2005-1-1', '2006-1-1', '2007-1-1', '2008-1-1', '2009-1-1', '2010-
→˓1-1', '2011-1-1', '2012-1-1', '2013-1-1', '2014-1-1']
verifs: ['1956-1-1', '1957-1-1', '1958-1-1', '1959-1-1', '1960-1-1', '1961-1-1',
→˓'1962-1-1', '1963-1-1', '1964-1-1', '1965-1-1', '1966-1-1', '1967-1-1', '1968-1-1',
→˓'1969-1-1', '1970-1-1', '1971-1-1', '1972-1-1', '1973-1-1', '1974-1-1', '1975-1-1',
→˓'1976-1-1', '1977-1-1', '1978-1-1', '1979-1-1', '1980-1-1', '1981-1-1', '1982-1-1',
→˓'1983-1-1', '1984-1-1', '1985-1-1', '1986-1-1', '1987-1-1', '1988-1-1', '1989-1-1',
→˓'1990-1-1', '1991-1-1', '1992-1-1', '1993-1-1', '1994-1-1', '1995-1-1', '1996-1-1',
→˓'1997-1-1', '1998-1-1', '1999-1-1', '2000-1-1', '2001-1-1', '2002-1-1', '2003-1-1',
→˓'2004-1-1', '2005-1-1', '2006-1-1', '2007-1-1', '2008-1-1', '2009-1-1', '2010-1-1',
→˓'2011-1-1', '2012-1-1', '2013-1-1', '2014-1-1', '2015-1-1']
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INFO:root:lead: 02 | inits: 1954-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1956-01-
→˓01 00:00:00-2015-01-01 00:00:00
DEBUG:root:
inits: ['1954-1-1', '1955-1-1', '1956-1-1', '1957-1-1', '1958-1-1', '1959-1-1', '1960-
→˓1-1', '1961-1-1', '1962-1-1', '1963-1-1', '1964-1-1', '1965-1-1', '1966-1-1', '1967-
→˓1-1', '1968-1-1', '1969-1-1', '1970-1-1', '1971-1-1', '1972-1-1', '1973-1-1', '1974-
→˓1-1', '1975-1-1', '1976-1-1', '1977-1-1', '1978-1-1', '1979-1-1', '1980-1-1', '1981-
→˓1-1', '1982-1-1', '1983-1-1', '1984-1-1', '1985-1-1', '1986-1-1', '1987-1-1', '1988-
→˓1-1', '1989-1-1', '1990-1-1', '1991-1-1', '1992-1-1', '1993-1-1', '1994-1-1', '1995-
→˓1-1', '1996-1-1', '1997-1-1', '1998-1-1', '1999-1-1', '2000-1-1', '2001-1-1', '2002-
→˓1-1', '2003-1-1', '2004-1-1', '2005-1-1', '2006-1-1', '2007-1-1', '2008-1-1', '2009-
→˓1-1', '2010-1-1', '2011-1-1', '2012-1-1', '2013-1-1']
verifs: ['1956-1-1', '1957-1-1', '1958-1-1', '1959-1-1', '1960-1-1', '1961-1-1',
→˓'1962-1-1', '1963-1-1', '1964-1-1', '1965-1-1', '1966-1-1', '1967-1-1', '1968-1-1',
→˓'1969-1-1', '1970-1-1', '1971-1-1', '1972-1-1', '1973-1-1', '1974-1-1', '1975-1-1',
→˓'1976-1-1', '1977-1-1', '1978-1-1', '1979-1-1', '1980-1-1', '1981-1-1', '1982-1-1',
→˓'1983-1-1', '1984-1-1', '1985-1-1', '1986-1-1', '1987-1-1', '1988-1-1', '1989-1-1',
→˓'1990-1-1', '1991-1-1', '1992-1-1', '1993-1-1', '1994-1-1', '1995-1-1', '1996-1-1',
→˓'1997-1-1', '1998-1-1', '1999-1-1', '2000-1-1', '2001-1-1', '2002-1-1', '2003-1-1',
→˓'2004-1-1', '2005-1-1', '2006-1-1', '2007-1-1', '2008-1-1', '2009-1-1', '2010-1-1',
→˓'2011-1-1', '2012-1-1', '2013-1-1', '2014-1-1', '2015-1-1']

One can also save out the log to a file.

[16]: logger = logging.getLogger()
logger.setLevel(logging.INFO)
fh = logging.FileHandler('hindcast.out')
logger.addHandler(fh)

[17]: skill = hindcast.verify(alignment='same_verifs')

INFO:root:lead: 01 | inits: 1963-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 02 | inits: 1962-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 03 | inits: 1961-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 04 | inits: 1960-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 05 | inits: 1959-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 06 | inits: 1958-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 07 | inits: 1957-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 08 | inits: 1956-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 09 | inits: 1955-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

[18]: skill = hindcast.verify(alignment='same_verifs')

INFO:root:lead: 01 | inits: 1963-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 02 | inits: 1962-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00 (continues on next page)
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(continued from previous page)

INFO:root:lead: 03 | inits: 1961-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 04 | inits: 1960-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 05 | inits: 1959-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 06 | inits: 1958-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 07 | inits: 1957-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 08 | inits: 1956-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 09 | inits: 1955-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00
INFO:root:lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-
→˓01 00:00:00-2015-01-01 00:00:00

[19]: !cat hindcast.out

lead: 01 | inits: 1963-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 02 | inits: 1962-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 03 | inits: 1961-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 04 | inits: 1960-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 05 | inits: 1959-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 06 | inits: 1958-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 07 | inits: 1957-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 08 | inits: 1956-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 09 | inits: 1955-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 01 | inits: 1963-01-01 00:00:00-2014-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 02 | inits: 1962-01-01 00:00:00-2013-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 03 | inits: 1961-01-01 00:00:00-2012-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 04 | inits: 1960-01-01 00:00:00-2011-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 05 | inits: 1959-01-01 00:00:00-2010-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 06 | inits: 1958-01-01 00:00:00-2009-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 07 | inits: 1957-01-01 00:00:00-2008-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 08 | inits: 1956-01-01 00:00:00-2007-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00
lead: 09 | inits: 1955-01-01 00:00:00-2006-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00

(continues on next page)

2.7. Verification Alignment 81



climpred

(continued from previous page)

lead: 10 | inits: 1954-01-01 00:00:00-2005-01-01 00:00:00 | verifs: 1964-01-01 00:00:
→˓00-2015-01-01 00:00:00

[20]: !rm hindcast.out

2.8 Metrics

All high-level functions have an optional metric argument that can be called to determine which metric is used in
computing predictability.

Note: We use the phrase ‘observations’ o here to refer to the ‘truth’ data to which we compare the forecast f. These
metrics can also be applied relative to a control simulation, reconstruction, observations, etc. This would just change
the resulting score from quantifying skill to quantifying potential predictability.

Internally, all metric functions require forecast and observations as inputs. The dimension dim is set in-
ternally by compute_hindcast() or compute_perfect_model() to specify over which dimensions the
metric is applied. See Comparisons for more on the dim argument.

2.8.1 Deterministic

Deterministic metrics assess the forecast as a definite prediction of the future, rather than in terms of probabilities.
Another way to look at deterministic metrics is that they are a special case of probabilistic metrics where a value of
one is assigned to one category and zero to all others [Jolliffe2011].

Correlation Metrics

The below metrics rely fundamentally on correlations in their computation. In the literature, correlation metrics are
typically referred to as the Anomaly Correlation Coefficient (ACC). This implies that anomalies in the forecast and
observations are being correlated. Typically, this is computed using the linear Pearson Product-Moment Correlation.
However, climpred also offers the Spearman’s Rank Correlation.

Note that the p value associated with these correlations is computed via a separate metric. Use
pearson_r_p_value or spearman_r_p_value to compute p values assuming that all samples in the corre-
lated time series are independent. Use pearson_r_eff_p_value or spearman_r_eff_p_value to account
for autocorrelation in the time series by calculating the effective_sample_size.

Pearson Product-Moment Correlation Coefficient

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [1]: print(f"\n\nKeywords: {metric_aliases['pearson_r']}")

Keywords: ['pearson_r', 'pr', 'acc', 'pacc']

climpred.metrics._pearson_r(forecast, verif, dim=None, **metric_kwargs)
Pearson product-moment correlation coefficient.
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A measure of the linear association between the forecast and verification data that is independent of the mean
and variance of the individual distributions. This is also known as the Anomaly Correlation Coefficient (ACC)
when correlating anomalies.

𝑐𝑜𝑟𝑟 =
𝑐𝑜𝑣(𝑓, 𝑜)

𝜎𝑓 · 𝜎𝑜
,

where 𝜎𝑓 and 𝜎𝑜 represent the standard deviation of the forecast and verification data over the experimental
period, respectively.

Note: Use metric pearson_r_p_value or pearson_r_eff_p_value to get the corresponding p value.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum -1.0
maximum 1.0
perfect 1.0
orientation positive

See also:

• xskillscore.pearson_r

• xskillscore.pearson_r_p_value

• climpred.pearson_r_p_value

• climpred.pearson_r_eff_p_value

Pearson Correlation p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [2]: print(f"\n\nKeywords: {metric_aliases['pearson_r_p_value']}")

Keywords: ['pearson_r_p_value', 'p_pval', 'pvalue', 'pval']

climpred.metrics._pearson_r_p_value(forecast, verif, dim=None, **metric_kwargs)
Probability that forecast and verification data are linearly uncorrelated.

Two-tailed p value associated with the Pearson product-moment correlation coefficient (pearson_r), assum-
ing that all samples are independent. Use pearson_r_eff_p_value to account for autocorrelation in the
forecast and verification data.
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Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum 1.0
perfect 1.0
orientation negative

See also:

• xskillscore.pearson_r

• xskillscore.pearson_r_p_value

• climpred.pearson_r

• climpred.pearson_r_eff_p_value

Effective Sample Size

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [3]: print(f"\n\nKeywords: {metric_aliases['effective_sample_size']}")

Keywords: ['effective_sample_size', 'n_eff', 'eff_n']

climpred.metrics._effective_sample_size(forecast, verif, dim=None, **metric_kwargs)
Effective sample size for temporally correlated data.

Note: Weights are not included here due to the dependence on temporal autocorrelation.

Note: This metric can only be used for hindcast-type simulations.

The effective sample size extracts the number of independent samples between two time series being correlated.
This is derived by assessing the magnitude of the lag-1 autocorrelation coefficient in each of the time series
being correlated. A higher autocorrelation induces a lower effective sample size which raises the correlation
coefficient for a given p value.
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The effective sample size is used in computing the effective p value. See pearson_r_eff_p_value and
spearman_r_eff_p_value.

𝑁𝑒𝑓𝑓 = 𝑁

(︂
1− 𝜌𝑓𝜌𝑜
1 + 𝜌𝑓𝜌𝑜

)︂
,

where 𝜌𝑓 and 𝜌𝑜 are the lag-1 autocorrelation coefficients for the forecast and verification data.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum ∞
perfect N/A
orientation positive

Reference:

• Bretherton, Christopher S., et al. “The effective number of spatial degrees of freedom of a time-
varying field.” Journal of climate 12.7 (1999): 1990-2009.

Pearson Correlation Effective p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [4]: print(f"\n\nKeywords: {metric_aliases['pearson_r_eff_p_value']}")

Keywords: ['pearson_r_eff_p_value', 'p_pval_eff', 'pvalue_eff', 'pval_eff']

climpred.metrics._pearson_r_eff_p_value(forecast, verif, dim=None, **metric_kwargs)
Probability that forecast and verification data are linearly uncorrelated, accounting for autocorrelation.

Note: Weights are not included here due to the dependence on temporal autocorrelation.

Note: This metric can only be used for hindcast-type simulations.

The effective p value is computed by replacing the sample size 𝑁 in the t-statistic with the effective sample size,
𝑁𝑒𝑓𝑓 . The same Pearson product-moment correlation coefficient 𝑟 is used as when computing the standard p
value.

𝑡 = 𝑟

√︂
𝑁𝑒𝑓𝑓 − 2

1− 𝑟2
,

2.8. Metrics 85



climpred

where 𝑁𝑒𝑓𝑓 is computed via the autocorrelation in the forecast and verification data.

𝑁𝑒𝑓𝑓 = 𝑁

(︂
1− 𝜌𝑓𝜌𝑜
1 + 𝜌𝑓𝜌𝑜

)︂
,

where 𝜌𝑓 and 𝜌𝑜 are the lag-1 autocorrelation coefficients for the forecast and verification data.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum 1.0
perfect 1.0
orientation negative

See also:

• climpred.effective_sample_size

• climpred.spearman_r_eff_p_value

Reference:

• Bretherton, Christopher S., et al. “The effective number of spatial degrees of freedom of a time-
varying field.” Journal of climate 12.7 (1999): 1990-2009.

Spearman’s Rank Correlation Coefficient

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [5]: print(f"\n\nKeywords: {metric_aliases['spearman_r']}")

Keywords: ['spearman_r', 'sacc', 'sr']

climpred.metrics._spearman_r(forecast, verif, dim=None, **metric_kwargs)
Spearman’s rank correlation coefficient.

𝑐𝑜𝑟𝑟 = pearsonr(𝑟𝑎𝑛𝑘𝑒𝑑(𝑓), 𝑟𝑎𝑛𝑘𝑒𝑑(𝑜))

This correlation coefficient is nonparametric and assesses how well the relationship between the forecast and
verification data can be described using a monotonic function. It is computed by first ranking the forecasts and
verification data, and then correlating those ranks using the pearson_r correlation.

This is also known as the anomaly correlation coefficient (ACC) when comparing anomalies, although the
Pearson product-moment correlation coefficient (pearson_r) is typically used when computing the ACC.
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Note: Use metric spearman_r_p_value or spearman_r_eff_p_value to get the corresponding p
value.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum -1.0
maximum 1.0
perfect 1.0
orientation positive

See also:

• xskillscore.spearman_r

• xskillscore.spearman_r_p_value

• climpred.spearman_r_p_value

• climpred.spearman_r_eff_p_value

Spearman’s Rank Correlation Coefficient p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [6]: print(f"\n\nKeywords: {metric_aliases['spearman_r_p_value']}")

Keywords: ['spearman_r_p_value', 's_pval', 'spvalue', 'spval']

climpred.metrics._spearman_r_p_value(forecast, verif, dim=None, **metric_kwargs)
Probability that forecast and verification data are monotonically uncorrelated.

Two-tailed p value associated with the Spearman’s rank correlation coefficient (spearman_r), assuming that
all samples are independent. Use spearman_r_eff_p_value to account for autocorrelation in the forecast
and verification data.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.
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• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum 1.0
perfect 1.0
orientation negative

See also:

• xskillscore.spearman_r

• xskillscore.spearman_r_p_value

• climpred.spearman_r

• climpred.spearman_r_eff_p_value

Spearman’s Rank Correlation Effective p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [7]: print(f"\n\nKeywords: {metric_aliases['spearman_r_eff_p_value']}")

Keywords: ['spearman_r_eff_p_value', 's_pval_eff', 'spvalue_eff', 'spval_eff']

climpred.metrics._spearman_r_eff_p_value(forecast, verif, dim=None, **metric_kwargs)
Probability that forecast and verification data are monotonically uncorrelated, accounting for autocorrelation.

Note: Weights are not included here due to the dependence on temporal autocorrelation.

Note: This metric can only be used for hindcast-type simulations.

The effective p value is computed by replacing the sample size 𝑁 in the t-statistic with the effective sample size,
𝑁𝑒𝑓𝑓 . The same Spearman’s rank correlation coefficient 𝑟 is used as when computing the standard p value.

𝑡 = 𝑟

√︂
𝑁𝑒𝑓𝑓 − 2

1− 𝑟2
,

where 𝑁𝑒𝑓𝑓 is computed via the autocorrelation in the forecast and verification data.

𝑁𝑒𝑓𝑓 = 𝑁

(︂
1− 𝜌𝑓𝜌𝑜
1 + 𝜌𝑓𝜌𝑜

)︂
,

where 𝜌𝑓 and 𝜌𝑜 are the lag-1 autocorrelation coefficients for the forecast and verification data.

Parameters

• forecast (xarray object) – Forecast.
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• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum 1.0
perfect 1.0
orientation negative

See also:

• climpred.effective_sample_size

• climpred.pearson_r_eff_p_value

Reference:

• Bretherton, Christopher S., et al. “The effective number of spatial degrees of freedom of a time-
varying field.” Journal of climate 12.7 (1999): 1990-2009.

Distance Metrics

This class of metrics simply measures the distance (or difference) between forecasted values and observed values.

Mean Squared Error (MSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [8]: print(f"\n\nKeywords: {metric_aliases['mse']}")

Keywords: ['mse']

climpred.metrics._mse(forecast, verif, dim=None, **metric_kwargs)
Mean Sqaure Error (MSE).

𝑀𝑆𝐸 = (𝑓 − 𝑜)2

The average of the squared difference between forecasts and verification data. This incorporates both the vari-
ance and bias of the estimator. Because the error is squared, it is more sensitive to large forecast errors than
mae, and thus a more conservative metric. For example, a single error of 2°C counts the same as two 1°C errors
when using mae. On the other hand, the 2°C error counts double for mse. See Jolliffe and Stephenson, 2011.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.
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• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative

See also:

• xskillscore.mse

Reference:

• Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A Practitioner’s Guide in Atmospheric
Science. John Wiley & Sons, Ltd, Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-
0-470-66071-3. URL: http://doi.wiley.com/10.1002/9781119960003.

Root Mean Square Error (RMSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [9]: print(f"\n\nKeywords: {metric_aliases['rmse']}")

Keywords: ['rmse']

climpred.metrics._rmse(forecast, verif, dim=None, **metric_kwargs)
Root Mean Sqaure Error (RMSE).

𝑅𝑀𝑆𝐸 =

√︁
(𝑓 − 𝑜)2

The square root of the average of the squared differences between forecasts and verification data.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative
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See also:

• xskillscore.rmse

Mean Absolute Error (MAE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [10]: print(f"\n\nKeywords: {metric_aliases['mae']}")

Keywords: ['mae']

climpred.metrics._mae(forecast, verif, dim=None, **metric_kwargs)
Mean Absolute Error (MAE).

𝑀𝐴𝐸 = |𝑓 − 𝑜|

The average of the absolute differences between forecasts and verification data. A more robust measure of
forecast accuracy than mse which is sensitive to large outlier forecast errors.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative

See also:

• xskillscore.mae

Reference:

• Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A Practitioner’s Guide in Atmospheric
Science. John Wiley & Sons, Ltd, Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-
0-470-66071-3. URL: http://doi.wiley.com/10.1002/9781119960003.

Median Absolute Error
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# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [11]: print(f"\n\nKeywords: {metric_aliases['median_absolute_error']}")

Keywords: ['median_absolute_error']

climpred.metrics._median_absolute_error(forecast, verif, dim=None, **metric_kwargs)
Median Absolute Error.

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑓 − 𝑜|)

The median of the absolute differences between forecasts and verification data. Applying the median function
to absolute error makes it more robust to outliers.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative

See also:

• xskillscore.median_absolute_error

Normalized Distance Metrics

Distance metrics like mse can be normalized to 1. The normalization factor depends on the comparison type choosen.
For example, the distance between an ensemble member and the ensemble mean is half the distance of an ensemble
member with other ensemble members. See _get_norm_factor().

Normalized Mean Square Error (NMSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [12]: print(f"\n\nKeywords: {metric_aliases['nmse']}")

Keywords: ['nmse', 'nev']

climpred.metrics._nmse(forecast, verif, dim=None, **metric_kwargs)
Normalized MSE (NMSE), also known as Normalized Ensemble Variance (NEV).
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Mean Square Error (mse) normalized by the variance of the verification data.

𝑁𝑀𝑆𝐸 = 𝑁𝐸𝑉 =
𝑀𝑆𝐸

𝜎2
𝑜 · 𝑓𝑎𝑐

=
(𝑓 − 𝑜)2

𝜎2
𝑜 · 𝑓𝑎𝑐

,

where 𝑓𝑎𝑐 is 1 when using comparisons involving the ensemble mean (m2e, e2c, e2o) and 2 when using
comparisons involving individual ensemble members (m2c, m2m, m2o). See _get_norm_factor().

Note: climpred uses a single-valued internal reference forecast for the NMSE, in the terminology of Murphy
1988. I.e., we use a single climatological variance of the verification data within the experimental window for
normalizing MSE.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

• comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor() (Handled internally by the compute functions)

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative
better than climatology 0.0 - 1.0
worse than climatology > 1.0

Reference:

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal
Variability.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the
Correlation Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https:
//doi.org/10/fc7mxd.

Normalized Mean Absolute Error (NMAE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [13]: print(f"\n\nKeywords: {metric_aliases['nmae']}")

Keywords: ['nmae']

2.8. Metrics 93

https://doi.org/10/ch4kc4
https://doi.org/10/fc7mxd
https://doi.org/10/fc7mxd


climpred

climpred.metrics._nmae(forecast, verif, dim=None, **metric_kwargs)
Normalized Mean Absolute Error (NMAE).

Mean Absolute Error (mae) normalized by the standard deviation of the verification data.

𝑁𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝜎𝑜 · 𝑓𝑎𝑐
=

|𝑓 − 𝑜|
𝜎𝑜 · 𝑓𝑎𝑐

,

where 𝑓𝑎𝑐 is 1 when using comparisons involving the ensemble mean (m2e, e2c, e2o) and 2 when using
comparisons involving individual ensemble members (m2c, m2m, m2o). See _get_norm_factor().

Note: climpred uses a single-valued internal reference forecast for the NMAE, in the terminology of Murphy
1988. I.e., we use a single climatological standard deviation of the verification data within the experimental
window for normalizing MAE.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

• comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor() (Handled internally by the compute functions)

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative
better than climatology 0.0 - 1.0
worse than climatology > 1.0

Reference:

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal
Variability.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the
Correlation Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https:
//doi.org/10/fc7mxd.

Normalized Root Mean Square Error (NRMSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [14]: print(f"\n\nKeywords: {metric_aliases['nrmse']}")

(continues on next page)
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(continued from previous page)

Keywords: ['nrmse']

climpred.metrics._nrmse(forecast, verif, dim=None, **metric_kwargs)
Normalized Root Mean Square Error (NRMSE).

Root Mean Square Error (rmse) normalized by the standard deviation of the verification data.

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎𝑜 ·
√
𝑓𝑎𝑐

=

√︃
𝑀𝑆𝐸

𝜎2
𝑜 · 𝑓𝑎𝑐

=

√︃
(𝑓 − 𝑜)2

𝜎2
𝑜 · 𝑓𝑎𝑐

,

where 𝑓𝑎𝑐 is 1 when using comparisons involving the ensemble mean (m2e, e2c, e2o) and 2 when using
comparisons involving individual ensemble members (m2c, m2m, m2o). See _get_norm_factor().

Note: climpred uses a single-valued internal reference forecast for the NRMSE, in the terminology of
Murphy 1988. I.e., we use a single climatological variance of the verification data within the experimental
window for normalizing RMSE.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

• comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor() (Handled internally by the compute functions)

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative
better than climatology 0.0 - 1.0
worse than climatology > 1.0

Reference:

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati,
and Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Fore-
cast Skill.” Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

• Hawkins, Ed, Steffen Tietsche, Jonathan J. Day, Nathanael Melia, Keith Haines, and Sarah Keeley.
“Aspects of Designing and Evaluating Seasonal-to-Interannual Arctic Sea-Ice Prediction Systems.”
Quarterly Journal of the Royal Meteorological Society 142, no. 695 (January 1, 2016): 672–83.
https://doi.org/10/gfb3pn.
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• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the
Correlation Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https:
//doi.org/10/fc7mxd.

Mean Square Error Skill Score (MSESS)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [15]: print(f"\n\nKeywords: {metric_aliases['msess']}")

Keywords: ['msess', 'ppp', 'msss']

climpred.metrics._msess(forecast, verif, dim=None, **metric_kwargs)
Mean Squared Error Skill Score (MSESS).

𝑀𝑆𝐸𝑆𝑆 = 1− 𝑀𝑆𝐸

𝜎2
𝑟𝑒𝑓 · 𝑓𝑎𝑐

= 1− (𝑓 − 𝑜)2

𝜎2
𝑟𝑒𝑓 · 𝑓𝑎𝑐

,

where 𝑓𝑎𝑐 is 1 when using comparisons involving the ensemble mean (m2e, e2c, e2o) and 2 when using
comparisons involving individual ensemble members (m2c, m2m, m2o). See _get_norm_factor().

This skill score can be intepreted as a percentage improvement in accuracy. I.e., it can be multiplied by 100%.

Note: climpred uses a single-valued internal reference forecast for the MSSS, in the terminology of Murphy
1988. I.e., we use a single climatological variance of the verification data within the experimental window for
normalizing MSE.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

• comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor() (Handled internally by the compute functions)

Details:

minimum -∞
maximum 1.0
perfect 1.0
orientation positive
better than climatology > 0.0
equal to climatology 0.0
worse than climatology < 0.0

Reference:
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• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal
Variability.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the
Correlation Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https:
//doi.org/10/fc7mxd.

• Pohlmann, Holger, Michael Botzet, Mojib Latif, Andreas Roesch, Martin Wild, and Peter Tschuck.
“Estimating the Decadal Predictability of a Coupled AOGCM.” Journal of Climate 17, no. 22
(November 1, 2004): 4463–72. https://doi.org/10/d2qf62.

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati,
and Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Fore-
cast Skill. Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

Mean Absolute Percentage Error (MAPE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [16]: print(f"\n\nKeywords: {metric_aliases['mape']}")

Keywords: ['mape']

climpred.metrics._mape(forecast, verif, dim=None, **metric_kwargs)
Mean Absolute Percentage Error (MAPE).

Mean absolute error (mae) expressed as the fractional error relative to the verification data.

𝑀𝐴𝑃𝐸 =
1

𝑛

∑︁ |𝑓 − 𝑜|
|𝑜|

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative

See also:

• xskillscore.mape
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Symmetric Mean Absolute Percentage Error (sMAPE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [17]: print(f"\n\nKeywords: {metric_aliases['smape']}")

Keywords: ['smape']

climpred.metrics._smape(forecast, verif, dim=None, **metric_kwargs)
Symmetric Mean Absolute Percentage Error (sMAPE).

Similar to the Mean Absolute Percentage Error (mape), but sums the forecast and observation mean in the
denominator.

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛

∑︁ |𝑓 − 𝑜|
|𝑓 |+ |𝑜|

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum 0.0
maximum 1.0
perfect 0.0
orientation negative

See also:

• xskillscore.smape

Unbiased Anomaly Correlation Coefficient (uACC)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [18]: print(f"\n\nKeywords: {metric_aliases['uacc']}")

Keywords: ['uacc']

climpred.metrics._uacc(forecast, verif, dim=None, **metric_kwargs)
Bushuk’s unbiased Anomaly Correlation Coefficient (uACC).

This is typically used in perfect model studies. Because the perfect model Anomaly Correlation Coefficient
(ACC) is strongly state dependent, a standard ACC (e.g. one computed using pearson_r) will be highly
sensitive to the set of start dates chosen for the perfect model study. The Mean Square Skill Score (MSSS)
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can be related directly to the ACC as MSSS = ACC^(2) (see Murphy 1988 and Bushuk et al. 2019), so the
unbiased ACC can be derived as uACC = sqrt(MSSS).

𝑢𝐴𝐶𝐶 =
√
𝑀𝑆𝑆𝑆 =

√︃
1− (𝑓 − 𝑜)2

𝜎2
𝑟𝑒𝑓 · 𝑓𝑎𝑐

,

where 𝑓𝑎𝑐 is 1 when using comparisons involving the ensemble mean (m2e, e2c, e2o) and 2 when using
comparisons involving individual ensemble members (m2c, m2m, m2o). See _get_norm_factor().

Note: Because of the square root involved, any negative MSSS values are automatically converted to NaNs.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

• comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor() (Handled internally by the compute functions)

Details:

minimum 0.0
maximum 1.0
perfect 1.0
orientation positive
better than climatology > 0.0
equal to climatology 0.0

Reference:

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati,
and Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Fore-
cast Skill.” Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

• Allan H. Murphy. Skill Scores Based on the Mean Square Error and Their Relationships to the
Correlation Coefficient. Monthly Weather Review, 116(12):2417–2424, December 1988. https:
//doi.org/10/fc7mxd.

Murphy Decomposition Metrics

Metrics derived in [Murphy1988] which decompose the MSESS into a correlation term, a conditional bias term, and
an unconditional bias term. See https://www-miklip.dkrz.de/about/murcss/ for a walk through of the decomposition.
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Standard Ratio

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [19]: print(f"\n\nKeywords: {metric_aliases['std_ratio']}")

Keywords: ['std_ratio']

climpred.metrics._std_ratio(forecast, verif, dim=None, **metric_kwargs)
Ratio of standard deviations of the forecast over the verification data.

std ratio =
𝜎𝑓

𝜎𝑜
,

where 𝜎𝑓 and 𝜎𝑜 are the standard deviations of the forecast and the verification data over the experimental
period, respectively.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute functions.

Details:

minimum 0.0
maximum ∞
perfect 1.0
orientation N/A

Reference:

• https://www-miklip.dkrz.de/about/murcss/

Conditional Bias

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [20]: print(f"\n\nKeywords: {metric_aliases['conditional_bias']}")

Keywords: ['conditional_bias', 'c_b', 'cond_bias']

climpred.metrics._conditional_bias(forecast, verif, dim=None, **metric_kwargs)
Conditional bias between forecast and verification data.

conditional bias = 𝑟𝑓𝑜 −
𝜎𝑓

𝜎𝑜
,

where 𝜎𝑓 and 𝜎𝑜 are the standard deviations of the forecast and verification data over the experimental period,
respectively.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.
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• dim (str) – Dimension(s) to perform metric over. Automatically set by compute functions.

Details:

minimum -∞
maximum 1.0
perfect 0.0
orientation negative

Reference:

• https://www-miklip.dkrz.de/about/murcss/

Unconditional Bias

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [21]: print(f"\n\nKeywords: {metric_aliases['unconditional_bias']}")

Keywords: ['unconditional_bias', 'u_b', 'bias']

Simple bias of the forecast minus the observations.

climpred.metrics._unconditional_bias(forecast, verif, dim=None, **metric_kwargs)
Unconditional bias.

𝑏𝑖𝑎𝑠 = 𝑓 − 𝑜

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute functions.

Details:

minimum -∞
maximum ∞
perfect 0.0
orientation negative

Reference:

• https://www.cawcr.gov.au/projects/verification/

• https://www-miklip.dkrz.de/about/murcss/

Bias Slope
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# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [22]: print(f"\n\nKeywords: {metric_aliases['bias_slope']}")

Keywords: ['bias_slope']

climpred.metrics._bias_slope(forecast, verif, dim=None, **metric_kwargs)
Bias slope between verification data and forecast standard deviations.

bias slope =
𝑠𝑜
𝑠𝑓

· 𝑟𝑓𝑜,

where 𝑟𝑓𝑜 is the Pearson product-moment correlation between the forecast and the verification data and 𝑠𝑜 and
𝑠𝑓 are the standard deviations of the verification data and forecast over the experimental period, respectively.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.

• dim (str) – Dimension(s) to perform metric over. Automatically set by compute functions.

Details:

minimum 0.0
maximum ∞
perfect 1.0
orientation negative

Reference:

• https://www-miklip.dkrz.de/about/murcss/

Murphy’s Mean Square Error Skill Score

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [23]: print(f"\n\nKeywords: {metric_aliases['msess_murphy']}")

Keywords: ['msess_murphy', 'msss_murphy']

climpred.metrics._msess_murphy(forecast, verif, dim=None, **metric_kwargs)
Murphy’s Mean Square Error Skill Score (MSESS).

𝑀𝑆𝐸𝑆𝑆𝑀𝑢𝑟𝑝ℎ𝑦 = 𝑟2𝑓𝑜 − [conditional bias]2 − [
(unconditional) bias

𝜎𝑜
]2,

where 𝑟2𝑓𝑜 represents the Pearson product-moment correlation coefficient between the forecast and verifica-
tion data and 𝜎𝑜 represents the standard deviation of the verification data over the experimental period. See
conditional_bias and unconditional_bias for their respective formulations.

Parameters

• forecast (xarray object) – Forecast.

• verif (xarray object) – Verification data.
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• dim (str) – Dimension(s) to perform metric over. Automatically set by compute function.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum -∞
maximum 1.0
perfect 1.0
orientation positive

See also:

• climpred.pearson_r

• climpred.conditional_bias

• climpred.unconditional_bias

Reference:

• https://www-miklip.dkrz.de/about/murcss/

• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the
Correlation Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https:
//doi.org/10/fc7mxd.

2.8.2 Probabilistic

Probabilistic metrics include the spread of the ensemble simulations in their calculations and assign a probability value
between 0 and 1 to their forecasts [Jolliffe2011].

Continuous Ranked Probability Score (CRPS)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [24]: print(f"\n\nKeywords: {metric_aliases['crps']}")

Keywords: ['crps']

climpred.metrics._crps(forecast, verif, **metric_kwargs)
Continuous Ranked Probability Score (CRPS).

The CRPS can also be considered as the probabilistic Mean Absolute Error (mae). It compares the empirical
distribution of an ensemble forecast to a scalar observation. Smaller scores indicate better skill.

𝐶𝑅𝑃𝑆 =

∫︁ ∞

−∞
(𝐹 (𝑓)−𝐻(𝑓 − 𝑜))2𝑑𝑓,

where 𝐹 (𝑓) is the cumulative distribution function (CDF) of the forecast (since the verification data are not
assigned a probability), and H() is the Heaviside step function where the value is 1 if the argument is positive
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(i.e., the forecast overestimates verification data) or zero (i.e., the forecast equals verification data) and is 0
otherwise (i.e., the forecast is less than verification data).

Note: The CRPS is expressed in the same unit as the observed variable. It generalizes the Mean Absolute Error
(MAE), and reduces to the MAE if the forecast is determinstic.

Parameters

• forecast (xr.object) – Forecast with member dim.

• verif (xr.object) – Verification data without member dim.

• metric_kwargs (xr.object) – If provided, the CRPS is calculated exactly with the
assigned probability weights to each forecast. Weights should be positive, but do not need
to be normalized. By default, each forecast is weighted equally.

Details:

minimum 0.0
maximum ∞
perfect 0.0
orientation negative

Reference:

• Matheson, James E., and Robert L. Winkler. “Scoring Rules for Continuous Probability Distribu-
tions.” Management Science 22, no. 10 (June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.

• https://www.lokad.com/continuous-ranked-probability-score

See also:

• properscoring.crps_ensemble

• xskillscore.crps_ensemble

Continuous Ranked Probability Skill Score (CRPSS)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [25]: print(f"\n\nKeywords: {metric_aliases['crpss']}")

Keywords: ['crpss']

climpred.metrics._crpss(forecast, verif, **metric_kwargs)
Continuous Ranked Probability Skill Score.

This can be used to assess whether the ensemble spread is a useful measure for the forecast uncertainty by
comparing the CRPS of the ensemble forecast to that of a reference forecast with the desired spread.

𝐶𝑅𝑃𝑆𝑆 = 1− 𝐶𝑅𝑃𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑

𝐶𝑅𝑃𝑆𝑐𝑙𝑖𝑚
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Note: When assuming a Gaussian distribution of forecasts, use default gaussian=True. If not gaussian,
you may specify the distribution type, xmin/xmax/tolerance for integration (see xskillscore.crps_quadrature).

Parameters

• forecast (xr.object) – Forecast with member dim.

• verif (xr.object) – Verification data without member dim.

• gaussian (bool, optional) – If True, assum Gaussian distribution for baseline
skill. Defaults to True.

• cdf_or_dist (scipy.stats) – Function which returns the cumulative density of the
forecast at value x. This can also be an object with a callable cdf() method such as a
scipy.stats.distribution object. Defaults to scipy.stats.norm.

• xmin (float) – Lower bounds for integration. Only use if not assuming Gaussian.

• xmax (float) –

• tol (float, optional) – The desired accuracy of the CRPS. Larger values will speed
up integration. If tol is set to None, bounds errors or integration tolerance errors will be
ignored. Only use if not assuming Gaussian.

Details:

minimum -∞
maximum 1.0
perfect 1.0
orientation positive
better than climatology > 0.0
worse than climatology < 0.0

Reference:

• Matheson, James E., and Robert L. Winkler. “Scoring Rules for Continuous Probability Distribu-
tions.” Management Science 22, no. 10 (June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.

• Gneiting, Tilmann, and Adrian E Raftery. “Strictly Proper Scoring Rules, Prediction, and Estimation.”
Journal of the American Statistical Association 102, no. 477 (March 1, 2007): 359–78. https://doi.
org/10/c6758w.

Example

>>> compute_perfect_model(ds, control, metric='crpss')
>>> compute_perfect_model(ds, control, metric='crpss', gaussian=False,

cdf_or_dist=scipy.stats.norm, xminimum=-10,
xmaximum=10, tol=1e-6)

See also:

• properscoring.crps_ensemble

• xskillscore.crps_ensemble
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Continuous Ranked Probability Skill Score Ensemble Spread

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [26]: print(f"\n\nKeywords: {metric_aliases['crpss_es']}")

Keywords: ['crpss_es']

climpred.metrics._crpss_es(forecast, verif, **metric_kwargs)
Continuous Ranked Probability Skill Score Ensemble Spread.

If the ensemble variance is smaller than the observed mse, the ensemble is said to be under-dispersive (or
overconfident). An ensemble with variance larger than the verification data indicates one that is over-dispersive
(underconfident).

𝐶𝑅𝑃𝑆𝑆 = 1−
𝐶𝑅𝑃𝑆(𝜎2

𝑓 )

𝐶𝑅𝑃𝑆(𝜎2
𝑜)

Parameters

• forecast (xr.object) – Forecast with member dim.

• verif (xr.object) – Verification data without member dim.

• weights (xarray object, optional) – Weights to apply over dimension. De-
faults to None.

• skipna (bool, optional) – If True, skip NaNs over dimension being applied to. De-
faults to False.

Details:

minimum -∞
maximum 0.0
perfect 0.0
orientation positive
under-dispersive > 0.0
over-dispersive < 0.0

Reference:

• Kadow, Christopher, Sebastian Illing, Oliver Kunst, Henning W. Rust, Holger Pohlmann, Wolfgang
A. Müller, and Ulrich Cubasch. “Evaluation of Forecasts by Accuracy and Spread in the MiKlip
Decadal Climate Prediction System.” Meteorologische Zeitschrift, December 21, 2016, 631–43. https:
//doi.org/10/f9jrhw.

Range:

• perfect: 0

• else: negative

Brier Score
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# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [27]: print(f"\n\nKeywords: {metric_aliases['brier_score']}")

Keywords: ['brier_score', 'brier', 'bs']

climpred.metrics._brier_score(forecast, verif, **metric_kwargs)
Brier Score.

The Mean Square Error (mse) of probabilistic two-category forecasts where the verification data are either 0
(no occurrence) or 1 (occurrence) and forecast probability may be arbitrarily distributed between occurrence
and non-occurrence. The Brier Score equals zero for perfect (single-valued) forecasts and one for forecasts that
are always incorrect.

𝐵𝑆(𝑓, 𝑜) = (𝑓1 − 𝑜)2,

where 𝑓1 is the forecast probability of 𝑜 = 1.

Note: The Brier Score requires that the observation is binary, i.e., can be described as one (a “hit”) or zero (a
“miss”).

Parameters

• forecast (xr.object) – Forecast with member dim.

• verif (xr.object) – Verification data without member dim.

• func (function) – Function to be applied to verification data and forecasts and then
mean('member') to get forecasts and verification data in interval [0,1].

Details:

minimum 0.0
maximum 1.0
perfect 0.0
orientation negative

Reference:

• Brier, Glenn W. Verification of forecasts expressed in terms of probability.” Monthly Weather Review
78, no. 1 (1950). https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

• https://www.nws.noaa.gov/oh/rfcdev/docs/ Glossary_Forecast_Verification_Metrics.pdf

See also:

• properscoring.brier_score

• xskillscore.brier_score

Example

>>> def pos(x): return x > 0
>>> compute_perfect_model(ds, control, metric='brier_score', func=pos)
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Threshold Brier Score

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [28]: print(f"\n\nKeywords: {metric_aliases['threshold_brier_score']}")

Keywords: ['threshold_brier_score', 'tbs']

climpred.metrics._threshold_brier_score(forecast, verif, **metric_kwargs)
Brier score of an ensemble for exceeding given thresholds.

𝐶𝑅𝑃𝑆 =

∫︁
𝑓

𝐵𝑆(𝐹 (𝑓), 𝐻(𝑓 − 𝑜))𝑑𝑓,

where 𝐹 (𝑜) =
∫︀
𝑓≤𝑜

𝑝(𝑓)𝑑𝑓 is the cumulative distribution function (CDF) of the forecast distribution 𝐹 , 𝑜 is a
point estimate of the true observation (observational error is neglected), 𝐵𝑆 denotes the Brier score and 𝐻(𝑥)
denotes the Heaviside step function, which we define here as equal to 1 for 𝑥 ≥ 0 and 0 otherwise.

Parameters

• forecast (xr.object) – Forecast with member dim.

• verif (xr.object) – Verification data without member dim.

• threshold (int, float, xr.object) – Threshold to check exceedance, see prop-
erscoring.threshold_brier_score.

Details:

minimum 0.0
maximum 1.0
perfect 0.0
orientation negative

Reference:

• Brier, Glenn W. Verification of forecasts expressed in terms of probability.” Monthly Weather Review
78, no. 1 (1950). https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

See also:

• properscoring.threshold_brier_score

• xskillscore.threshold_brier_score

Example

>>> compute_perfect_model(ds, control,
metric='threshold_brier_score', threshold=.5)

2.8.3 User-defined metrics

You can also construct your own metrics via the climpred.metrics.Metric class.
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Metric(name, function, positive, . . . [, . . . ]) Master class for all metrics.

First, write your own metric function, similar to the existing ones with required arguments forecast,
observations, dim=None, and **metric_kwargs:

from climpred.metrics import Metric

def _my_msle(forecast, observations, dim=None, **metric_kwargs):
"""Mean squared logarithmic error (MSLE).
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-

→˓model/loss-functions/mean-squared-logarithmic-error."""
return ( (np.log(forecast + 1) + np.log(observations + 1) ) ** 2).mean(dim)

Then initialize this metric function with climpred.metrics.Metric:

_my_msle = Metric(
name='my_msle',
function=_my_msle,
probabilistic=False,
positive=False,
unit_power=0,
)

Finally, compute skill based on your own metric:

skill = compute_perfect_model(ds, control, metric=_my_msle)

Once you come up with an useful metric for your problem, consider contributing this metric to climpred, so all users
can benefit from your metric, see contributing.

2.8.4 References

2.9 Comparisons

Forecasts have to be verified against some product to evaluate their performance. However, when verifying against
a product, there are many different ways one can compare the ensemble of forecasts. Here we cover the comparison
options for both hindcast and perfect model ensembles. See terminology for clarification on the differences between
these two experimental setups.

Note that all compute functions (compute_hindcast(), compute_perfect_model(),
compute_hindcast(), bootstrap_hindcast(), bootstrap_perfect_model()) take an op-
tional comparison='' keyword to select the comparison style. See below for a detailed description on the
differences between these comparisons.

2.9.1 Hindcast Ensembles

In hindcast ensembles, the ensemble mean forecast (comparison='e2o') is expected to perform better than indi-
vidual ensemble members (comparison='m2o') as the chaotic component of forecasts is expected to be suppressed
by this averaging, while the memory of the system sustains. [Boer2016]

keyword: 'e2o', 'e2r'

This is the default option.
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_e2o(hind, verif[, metric]) Compare the ensemble mean forecast to the verification
data for a HindcastEnsemble setup.

keyword: 'm2o', 'm2r'

_m2o(hind, verif[, metric]) Compares each ensemble member individually to the
verification data for a HindcastEnsemble setup.

2.9.2 Perfect Model Ensembles

In perfect-model frameworks, there are many more ways of verifying forecasts. [Seferian2018] uses a comparison of
all ensemble members against the control run (comparison='m2c') and all ensemble members against all other
ensemble members (comparison='m2m'). Furthermore, the ensemble mean forecast can be verified against one
control member (comparison='e2c') or all members (comparison='m2e') as done in [Griffies1997].

keyword: 'm2e'

This is the default option.

_m2e(ds[, metric]) Compare all members to ensemble mean while leaving
out the reference in

keyword: 'm2c'

_m2c(ds[, control_member, metric]) Compare all other members forecasts to control member
verification.

keyword: 'm2m'

_m2m(ds[, metric]) Compare all members to all others in turn while leaving
out the verification member.

keyword: 'e2c'

_e2c(ds[, control_member, metric]) Compare ensemble mean forecast to control member
verification.

2.9.3 Normalization

The goal of a normalized distance metric is to get a constant or comparable value of typically 1 (or 0 for metrics
defined as 1 - metric) when the metric saturates and the predictability horizon is reached (see metrics).

A factor is added in the normalized metric formula (see [Seferian2018]) to accomodate different comparison styles.
For example, nrmse gets smalled in comparison m2e than m2m by design, since the ensembe mean is always closer
to individual members than the ensemble members to each other. In turn, the normalization factor is 2 for comparisons
m2c, m2m, and m2o. It is 1 for m2e, e2c, and e2o.
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2.9.4 Interpretation of Results

While HindcastEnsemble skill is computed over all initializations init of the hindcast, the resulting skill is a
mean forecast skill over all initializations.

PerfectModelEnsemble skill is computed over a supervector comprised of all initializations and members, which
allows the computation of the ACC-based skill [Bushuk2018], but also returns a mean forecast skill over all initializa-
tions.

The supervector approach shown in [Bushuk2018] and just calculating a distance-based metric like rmse over the
member dimension as in [Griffies1997] yield very similar results.

2.9.5 Compute over dimension

The optional argument dim defines over which dimension a metric is computed. We can apply a metric over
dim from ['init', 'member', ['member', 'init']] in compute_perfect_model() and ['init',
'member'] in compute_hindcast(). The resulting skill is then reduced by this dim. Therefore, applying a
metric over dim='member' creates a skill for all initializations individually. This can show the initial conditions
dependence of skill. Likewise when computing skill over 'init', we get skill for each member. This dim argument
is different from the comparison argument which just specifies how forecast and observations are defined.

However, this above logic applies to deterministic metrics. Probabilistic metrics need to be applied to the member di-
mension and comparison from ['m2c', 'm2m'] in compute_perfect_model() and 'm2o' comparison in
compute_hindcast(). Using a probabilistic metric automatically switches internally to using dim='member'.

2.9.6 User-defined comparisons

You can also construct your own comparisons via the Comparison class.

Comparison(name, function, hindcast, . . . [, . . . ]) Master class for all comparisons.

First, write your own comparison function, similar to the existing ones. If a comparison should also be used for
probabilistic metrics, make sure that metric.probabilistic returns forecast with member dimension and
observations without. For deterministic metrics, return forecast and observations with identical dimen-
sions but without an identical comparison:

from climpred.comparisons import Comparison, _drop_members

def _my_m2median_comparison(ds, metric=None):
"""Identical to m2e but median."""
observations_list = []
forecast_list = []
supervector_dim = 'member'
for m in ds.member.values:

forecast = _drop_members(ds, rmd_member=[m]).median('member')
observations = ds.sel(member=m).squeeze()
forecast_list.append(forecast)
observations_list.append(observations)

observations = xr.concat(observations_list, supervector_dim)
forecast = xr.concat(forecast_list, supervector_dim)
forecast[supervector_dim] = np.arange(forecast[supervector_dim].size)
observations[supervector_dim] = np.arange(observations[supervector_dim].size)
return forecast, observations

Then initialize this comparison function with Comparison:
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__my_m2median_comparison = Comparison(
name='m2me',
function=_my_m2median_comparison,
probabilistic=False,
hindcast=False)

Finally, compute skill based on your own comparison:

skill = compute_perfect_model(ds, control,
metric='rmse',
comparison=__my_m2median_comparison)

Once you come up with an useful comparison for your problem, consider contributing this comparison to climpred,
so all users can benefit from your comparison, see contributing.

2.9.7 References

2.10 Significance Testing

Significance testing is important for assessing whether a given initialized prediction system is skillful. Some questions
that significance testing can answer are:

• Is the correlation coefficient of a lead time series significantly different from zero?

• What is the probability that the retrospective forecast is more valuable than a historical simulation?

• Are correlation coefficients statistically significant despite temporal and spatial autocorrelation?

All of these questions deal with statistical significance. See below on how to use climpred to address these ques-
tions. Please also have a look at the significance testing example.

2.10.1 p value for temporal correlations

For the correlation metrics, like _pearson_r() and _spearman_r(), climpred also hosts the as-
sociated p-value, like _pearson_r_p_value(), that this correlation is significantly different from zero.
_pearson_r_eff_p_value() also incorporates the reduced degrees of freedom due to temporal autocorrela-
tion. See example.

2.10.2 Bootstrapping with replacement

Testing statistical significance through bootstrapping is commonly used in the field of climate prediction [could add
some example citations here]. Bootstrapping relies on resampling the underlying data with replacement for a large
number of iterations, as proposed by the decadal prediction framework of Goddard et al. 2013 [Goddard2013]. This
means that the initialized ensemble is resampled with replacement along a dimension (init or member) and then
that resampled ensemble is verified against the observations. This leads to a distribution of initialized skill. Further,
a reference forecast uses the resampled initialized ensemble, e.g. compute_persistence(), which creates a
reference skill distribution. Lastly, an uninitialized skill distribution is created from the underlying historical members
or the control simulation.

The probability or p value is the fraction of these resampled initialized metrics beaten by the uninitialized or resampled
reference metrics calculated from their respective distributions. Confidence intervals using these distributions are also
calculated.
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This behavior is incorporated into climpred by the base function bootstrap_compute(), which is wrapped by
bootstrap_hindcast() and bootstrap_perfect_model() for the respective prediction simulation type.
See example

2.10.3 Field significance

Please use esmtools.testing.multipletests() to control the false discovery rate (FDR) in geospatial data
from the above obtained p-values [Wilks2016]. See the FDR example.

2.10.4 References

2.11 Prediction Terminology

Terminology is often confusing and highly variable amongst those that make predictions in the geoscience community.
Here we define some common terms in climate prediction and how we use them in climpred.

2.11.1 Simulation Design

Hindcast Ensemble: m ensemble members are initialized from a simulation (generally a reconstruction from reanalysis)
or an analysis (representing the current state of the atmosphere, land, and ocean by assimilation of obsevations) at n
initialization dates and integrated for l lead years [Boer2016] (HindcastEnsemble).

Perfect Model Experiment: m ensemble members are initialized from a control simulation at n randomly chosen
initialization dates and integrated for l lead years [Griffies1997] (PerfectModelEnsemble).

Reconstruction/Assimilation: A “reconstruction” is a model solution that uses observations in some capacity to ap-
proximate historical or current conditions of the atmosphere, ocean, sea ice, and/or land. This could be done via a
forced simulation, such as an OMIP run that uses a dynamical ocean/sea ice core with reanalysis forcing from at-
mospheric winds. This could also be a fully data assimilative model, which assimilates observations into the model
solution. For weather, subseasonal, and seasonal predictions, the terms re-analysis and analysis are the terms typically
used, while reconstruction is more commonly used for decadal predictions.

Uninitialized Ensemble: In this framework, an uninitialized ensemble is one that is generated by perturbing initial
conditions only at one point in the historical run. These are generated via micro (round-off error perturbations) or
macro (starting from completely different restart files) methods. Uninitialized ensembles are used to approximate the
magnitude of internal climate variability and to confidently extract the forced response (ensemble mean) in the climate
system. In climpred, we use uninitialized ensembles as a baseline for how important (reoccurring) initializations
are for lending predictability to the system. Some modeling centers (such as NCAR) provide a dynamical uninitialized
ensemble (the CESM Large Ensemble) along with their initialized prediction system (the CESM Decadal Prediction
Large Ensemble). If this isn’t available, one can approximate the unintiailized response by bootstrapping a control
simulation.

2.11.2 Forecast Assessment

Accuracy: The average degree of correspondence between individual pairs of forecasts and observations
[Murphy1988]; [Jolliffe2011]. Examples include Mean Absolute Error (MAE) and Mean Square Error (MSE). See
metrics.

Association: The overall strength of the relationship between individual pairs of forecasts and observations
[Jolliffe2011]. The primary measure of association is the Anomaly Correlation Coefficient (ACC), which can be
measured using the Pearson product-moment correlation or Spearman’s Rank correlation. See metrics.
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(Potential) Predictability: This characterizes the “ability to be predicted” rather than the current “capability to predict.”
One estimates this by computing a metric (like the anomaly correlation coefficient (ACC)) between the prediction
ensemble and a member (or collection of members) selected as the verification member(s) (in a perfect-model setup)
or the reconstruction that initialized it (in a hindcast setup) [Meehl2013] [Pegion2017].

(Prediction) Skill: This characterizes the current ability of the ensemble forecasting system to predict the real world.
This is derived by computing a metric between the prediction ensemble and observations, reanalysis, or analysis of
the real world [Meehl2013] [Pegion2017].

Skill Score: The most generic skill score can be defined as the following [Murphy1988]:

𝑆 =

𝑓𝑟𝑎𝑐𝐴𝑓 −𝐴𝑟𝐴𝑝 −𝐴𝑟,

where 𝐴𝑓 , 𝐴𝑝, and 𝐴𝑟 represent the accuracy of the forecast being assessed, the accuracy of a perfect forecast, and the
accuracy of the reference forecast (e.g. persistence), respectively [Murphy1985]. Here, 𝑆 represents the improvement
in accuracy of the forecasts over the reference forecasts relative to the total possible improvement in accuracy. They are
typically designed to take a value of 1 for a perfect forecast and 0 for equivelant to the reference forecast [Jolliffe2011].

2.11.3 Forecasting

Hindcast: Retrospective forecasts of the past initialized from a reconstruction integrated forward in time, also called
re-forcasts. Depending on the length of time of the integeration, external forcings may or may not be included. The
longer the integeration (e.g. decadal vs. daily), the more important it is to include external forcnig. [Boer2016].
Because they represent so-called forecasts over periods that already occurred, their prediction skill can be evaluated.

Prediction: Forecasts initialized from a reconstruction integrated into the future. Depending on the length of time of
the integeration, external forcings may or may not be included. The longer the integeration (e.g. decadal vs. daily),
the more important it is to include external forcing. [Boer2016] Because predictions are made into the future, it is
necessary to wait until the forecast occurs before one can quantify the skill of the forecast.

Projection An estimate of the future climate that is dependent on the externally forced climate response, such as
anthropogenic greenhouse gases, aerosols, and volcanic eruptions [Meehl2013].

2.11.4 References

2.12 Reference Forecasts

To quantify the quality of an initialized forecast, it is useful to judge it against some simple reference forecast.
climpred currently supports a persistence forecast, but future releases will allow computation of other reference
forecasts. Consider opening a Pull Request to get it implemented more quickly.

Persistence Forecast: Whatever is observed at the time of initialization is forecasted to persist into the fore-
cast period [Jolliffe2012]. You can compute this directly via compute_persistence() or as a method of
HindcastEnsemble and PerfectModelEnsemble.

Damped Persistence Forecast: (Not Implemented) The amplitudes of the anomalies reduce in time exponentially at
a time scale of the local autocorrelation [Yuan2016].

𝑣𝑑𝑝(𝑡) = 𝑣(0)𝑒−𝛼𝑡

Climatology: (Not Implemented) The average values at the temporal forecast resolution (e.g., annual, monthly) over
some long period, which is usually 30 years [Jolliffe2012].

Random Mechanism: (Not Implemented) A probability distribution is assigned to the possible range of the vari-
able being forecasted, and a sequence of forecasts is produced by taking a sequence of independent values from
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that distribution [Jolliffe2012]. This would be similar to computing an uninitialized forecast, using climpred’s
compute_uninitialized() function.

2.12.1 References

Help & Reference

• API Reference

• What’s New

• Helpful Links

• Publications Using climpred

• Contribution Guide

• Code of Conduct

• Release Procedure

• Contributors

2.13 API Reference

This page provides an auto-generated summary of climpred’s API. For more details and examples, refer to the relevant
chapters in the main part of the documentation.

2.13.1 High-Level Classes

A primary feature of climpred is our prediction ensemble objects, HindcastEnsemble and
PerfectModelEnsemble. Users can append their initialized ensemble to these classes, as well as an arbi-
trary number of verification products (assimilations, reconstructions, observations), control runs, and uninitialized
ensembles.

HindcastEnsemble

A HindcastEnsemble is a prediction ensemble that is initialized off of some form of observations (an assimilation,
renanalysis, etc.). Thus, it is anticipated that forecasts are verified against observation-like products. Read more about
the terminology here.

HindcastEnsemble(xobj) An object for climate prediction ensembles initialized
by a data-like product.

climpred.classes.HindcastEnsemble

class climpred.classes.HindcastEnsemble(xobj)
An object for climate prediction ensembles initialized by a data-like product.

HindcastEnsemble is a sub-class of PredictionEnsemble. It tracks all verification data associated with the pre-
diction ensemble for easy computation across multiple variables and products.

This object is built on xarray and thus requires the input object to be an xarray Dataset or DataArray.

2.13. API Reference 115

terminology.html


climpred

__init__(xobj)
Create a HindcastEnsemble object by inputting output from a prediction ensemble in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

observations
Dictionary of verification data to associate with the decadal prediction ensemble.

uninitialized
Dictionary of companion (or bootstrapped) uninitialized ensemble run.

Methods

__init__(xobj) Create a HindcastEnsemble object by inputting out-
put from a prediction ensemble in xarray format.

add_observations(xobj, name) Add a verification data with which to verify the ini-
tialized ensemble.

HindcastEnsemble.add_reference
add_uninitialized(xobj) Add a companion uninitialized ensemble for com-

parison to verification data.
HindcastEnsemble.compute_metric
HindcastEnsemble.
compute_persistence
HindcastEnsemble.
compute_uninitialized
get_initialized() Returns the xarray dataset for the initialized ensem-

ble.
get_observations([name]) Returns xarray Datasets of the observa-

tions/verification data.
HindcastEnsemble.get_reference
get_uninitialized() Returns the xarray dataset for the uninitialized en-

semble.
smooth([smooth_kws]) Smooth all entries of PredictionEnsemble in the

same manner to be able to still calculate prediction
skill afterwards.

verify([name, reference, metric, . . . ]) Verifies the initialized ensemble against observa-
tions/verification data.

Add and Retrieve Datasets

HindcastEnsemble.__init__(xobj) Create a HindcastEnsemble object by inputting output
from a prediction ensemble in xarray format.

HindcastEnsemble.add_observations(xobj,
name)

Add a verification data with which to verify the initial-
ized ensemble.

HindcastEnsemble.
add_uninitialized(xobj)

Add a companion uninitialized ensemble for compari-
son to verification data.

HindcastEnsemble.get_initialized() Returns the xarray dataset for the initialized ensemble.
HindcastEnsemble.
get_observations([name])

Returns xarray Datasets of the observations/verification
data.

HindcastEnsemble.get_uninitialized() Returns the xarray dataset for the uninitialized ensem-
ble.
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climpred.classes.HindcastEnsemble.__init__

HindcastEnsemble.__init__(xobj)
Create a HindcastEnsemble object by inputting output from a prediction ensemble in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

observations
Dictionary of verification data to associate with the decadal prediction ensemble.

climpred.classes.uninitialized
Dictionary of companion (or bootstrapped) uninitialized ensemble run.

climpred.classes.HindcastEnsemble.add_observations

HindcastEnsemble.add_observations(xobj, name)
Add a verification data with which to verify the initialized ensemble.

Parameters

• xobj (xarray object) – Dataset/DataArray to append to the HindcastEnsemble
object.

• name (str) – Short name for referencing the verification data.

climpred.classes.HindcastEnsemble.add_uninitialized

HindcastEnsemble.add_uninitialized(xobj)
Add a companion uninitialized ensemble for comparison to verification data.

Parameters xobj (xarray object) – Dataset/DataArray of the uninitialzed ensemble.

climpred.classes.HindcastEnsemble.get_initialized

HindcastEnsemble.get_initialized()
Returns the xarray dataset for the initialized ensemble.

climpred.classes.HindcastEnsemble.get_observations

HindcastEnsemble.get_observations(name=None)
Returns xarray Datasets of the observations/verification data.

Parameters name (str, optional) – Name of the observations/verification data to return. If
None, return dictionary of all observations/verification data.

Returns Dictionary of xarray Datasets (if name is None) or single xarray Dataset.

climpred.classes.HindcastEnsemble.get_uninitialized

HindcastEnsemble.get_uninitialized()
Returns the xarray dataset for the uninitialized ensemble.
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Analysis Functions

HindcastEnsemble.verify([name, reference,
. . . ])

Verifies the initialized ensemble against observa-
tions/verification data.

HindcastEnsemble.compute_persistence
HindcastEnsemble.
compute_uninitialized

climpred.classes.HindcastEnsemble.verify

HindcastEnsemble.verify(name=None, reference=None, metric=’pearson_r’, comparison=’e2o’,
alignment=’same_verifs’, dim=’init’)

Verifies the initialized ensemble against observations/verification data.

This will automatically verify against all shared variables between the initialized ensemble and observa-
tions/verification data.

Parameters

• name (str) – Short name of observations/verification data to compare to. If None, com-
pare to all observations/verification data.

• metric (str, default 'pearson_r') – Metric to apply for verification.

• comparison (str, default 'e2o') – How to compare to the observa-
tions/verification data. (‘e2o’ for ensemble mean to observations/verification data. ‘m2o’
for each individual member to observations/verification data).

• alignment (str) – which inits or verification times should be aligned? - maximize/None:
maximize the degrees of freedom by slicing hind and verif to a common time frame at
each lead. - same_inits: slice to a common init frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.
- same_verif: slice to a common/consistent verification time frame prior to computing met-
ric. This philosophy follows the thought that each lead should be based on the same set of
verification dates.

Returns Dataset of comparison results (if comparing to one observational product), or dictionary of
Datasets with keys corresponding to observations/verification data short name.

Pre-Processing

HindcastEnsemble.smooth([smooth_kws]) Smooth all entries of PredictionEnsemble in the same
manner to be able to still calculate prediction skill after-
wards.

climpred.classes.HindcastEnsemble.smooth

HindcastEnsemble.smooth(smooth_kws=’goddard2013’)
Smooth all entries of PredictionEnsemble in the same manner to be able to still calculate prediction skill after-
wards.

Parameters xobj (xarray object) – decadal prediction ensemble output.

smooth_kws
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Dictionary to specify the dims to smooth compatible with spatial_smoothing_xesmf, temporal_smoothing
or spatial_smoothing_xrcoarsen. Shortcut for Goddard et al. 2013 recommendations: ‘goddard2013’

Type dict or str

Example: >>> PredictionEnsemble.smooth(smooth_kws={‘time’: 2,

‘lat’: 5, ‘lon’: 4’})

>>> PredictionEnsemble.smooth(smooth_kws='goddard2013')

PerfectModelEnsemble

A PerfectModelEnsemble is a prediction ensemble that is initialized off of a control simulation for a number of
randomly chosen initialization dates. Thus, forecasts cannot be verified against real-world observations. Instead, they
are compared to one another and to the original control run. Read more about the terminology here.

PerfectModelEnsemble(xobj) An object for “perfect model” climate prediction ensem-
bles.

climpred.classes.PerfectModelEnsemble

class climpred.classes.PerfectModelEnsemble(xobj)
An object for “perfect model” climate prediction ensembles.

PerfectModelEnsemble is a sub-class of PredictionEnsemble. It tracks the control run used to initialize the
ensemble for easy computations, bootstrapping, etc.

This object is built on xarray and thus requires the input object to be an xarray Dataset or DataArray.

__init__(xobj)
Create a PerfectModelEnsemble object by inputting output from the control run in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

control
Dictionary of control run associated with the initialized ensemble.

uninitialized
Dictionary of uninitialized run that is bootstrapped from the initialized run.

Methods

__init__(xobj) Create a PerfectModelEnsemble object by inputting
output from the control run in xarray format.

add_control(xobj) Add the control run that initialized the climate pre-
diction ensemble.

bootstrap([metric, comparison, sig, . . . ]) Bootstrap ensemble simulations with replacement.
compute_metric([metric, comparison]) Compares the initialized ensemble to the control run.
compute_persistence([metric]) Compute a simple persistence forecast for the control

run.
compute_uninitialized([metric, compari-
son])

Compares the bootstrapped uninitialized run to the
control run.

Continued on next page
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Table 15 – continued from previous page
generate_uninitialized() Generate an uninitialized ensemble by bootstrapping

the initialized prediction ensemble.
get_control() Returns the control as an xarray dataset.
get_initialized() Returns the xarray dataset for the initialized ensem-

ble.
get_uninitialized() Returns the xarray dataset for the uninitialized en-

semble.
smooth([smooth_kws]) Smooth all entries of PredictionEnsemble in the

same manner to be able to still calculate prediction
skill afterwards.

Add and Retrieve Datasets

PerfectModelEnsemble.__init__(xobj) Create a PerfectModelEnsemble object by inputting out-
put from the control run in xarray format.

PerfectModelEnsemble.add_control(xobj) Add the control run that initialized the climate predic-
tion ensemble.

PerfectModelEnsemble.
get_initialized()

Returns the xarray dataset for the initialized ensemble.

PerfectModelEnsemble.get_control() Returns the control as an xarray dataset.
PerfectModelEnsemble.
get_uninitialized()

Returns the xarray dataset for the uninitialized ensem-
ble.

climpred.classes.PerfectModelEnsemble.__init__

PerfectModelEnsemble.__init__(xobj)
Create a PerfectModelEnsemble object by inputting output from the control run in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

control
Dictionary of control run associated with the initialized ensemble.

climpred.classes.uninitialized
Dictionary of uninitialized run that is bootstrapped from the initialized run.

climpred.classes.PerfectModelEnsemble.add_control

PerfectModelEnsemble.add_control(xobj)
Add the control run that initialized the climate prediction ensemble.

Parameters xobj (xarray object) – Dataset/DataArray of the control run.

climpred.classes.PerfectModelEnsemble.get_initialized

PerfectModelEnsemble.get_initialized()
Returns the xarray dataset for the initialized ensemble.
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climpred.classes.PerfectModelEnsemble.get_control

PerfectModelEnsemble.get_control()
Returns the control as an xarray dataset.

climpred.classes.PerfectModelEnsemble.get_uninitialized

PerfectModelEnsemble.get_uninitialized()
Returns the xarray dataset for the uninitialized ensemble.

Analysis Functions

PerfectModelEnsemble.bootstrap([metric,
. . . ])

Bootstrap ensemble simulations with replacement.

PerfectModelEnsemble.
compute_metric([. . . ])

Compares the initialized ensemble to the control run.

PerfectModelEnsemble.
compute_persistence([. . . ])

Compute a simple persistence forecast for the control
run.

PerfectModelEnsemble.
compute_uninitialized([. . . ])

Compares the bootstrapped uninitialized run to the con-
trol run.

climpred.classes.PerfectModelEnsemble.bootstrap

PerfectModelEnsemble.bootstrap(metric=’pearson_r’, comparison=’m2e’, sig=95, itera-
tions=500, pers_sig=None)

Bootstrap ensemble simulations with replacement.

Parameters

• metric (str, default 'pearson_r') – Metric to apply for bootstrapping.

• comparison (str, default 'm2e') – Comparison style for bootstrapping.

• sig (int, default 95) – Significance level for uninitialized and initialized compari-
son.

• iterations (int, default 500) – Number of resampling iterations for bootstrap-
ping with replacement.

• pers_sig (int, default None) – If not None, the separate significance level for
persistence.

Returns

Dictionary of Datasets for each variable applied to with the following variables:

• init_ci: confidence levels of init_skill.

• uninit_ci: confidence levels of uninit_skill.

• pers_ci: confidence levels of pers_skill.

• p_uninit_over_init: p value of the hypothesis that the difference of skill between the
initialized and uninitialized simulations is smaller or equal to zero based on bootstrap-
ping with replacement.
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• p_pers_over_init: p value of the hypothesis that the difference of skill between the ini-
tialized and persistence simulations is smaller or equal to zero based on bootstrapping
with replacement.

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

climpred.classes.PerfectModelEnsemble.compute_metric

PerfectModelEnsemble.compute_metric(metric=’pearson_r’, comparison=’m2m’)
Compares the initialized ensemble to the control run.

Parameters

• metric (str, default 'pearson_r') – Metric to apply in the comparison.

• comparison (str, default 'm2m') – How to compare the climate prediction en-
semble to the control.

Returns Result of the comparison as a Dataset.

climpred.classes.PerfectModelEnsemble.compute_persistence

PerfectModelEnsemble.compute_persistence(metric=’pearson_r’)
Compute a simple persistence forecast for the control run.

Parameters metric (str, default 'pearson_r') – Metric to apply to the persistence
forecast.

Returns Dataset of persistence forecast results (if refname is declared), or dictionary of Datasets
with keys corresponding to verification data name.

Reference:

• Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug. Empirical methods in short-term
climate prediction. Oxford University Press, 2007.

climpred.classes.PerfectModelEnsemble.compute_uninitialized

PerfectModelEnsemble.compute_uninitialized(metric=’pearson_r’, comparison=’m2e’)
Compares the bootstrapped uninitialized run to the control run.

Parameters

• metric (str, default 'pearson_r') – Metric to apply in the comparison.

• comparison (str, default 'm2m') – How to compare to the control run.

• running (int, default None) – Size of the running window for variance smooth-
ing.

Returns Result of the comparison as a Dataset.
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Generate Data

PerfectModelEnsemble.
generate_uninitialized()

Generate an uninitialized ensemble by bootstrapping the
initialized prediction ensemble.

climpred.classes.PerfectModelEnsemble.generate_uninitialized

PerfectModelEnsemble.generate_uninitialized()
Generate an uninitialized ensemble by bootstrapping the initialized prediction ensemble.

Returns Bootstrapped (uninitialized) ensemble as a Dataset.

2.13.2 Direct Function Calls

A user can directly call functions in climpred. This requires entering more arguments, e.g. the initialized ensem-
ble Dataset/xarray.core.dataarray.DataArray directly as well as a verification product. Our object
HindcastEnsemble and PerfectModelEnsemble wrap most of these functions, making the analysis process
much simpler. Once we have wrapped all of the functions in their entirety, we will likely depricate the ability to call
them directly.

Bootstrap

bootstrap_compute(hind, verif[, hist, . . . ]) Bootstrap compute with replacement.
bootstrap_hindcast(hind, hist, verif[, . . . ]) Bootstrap compute with replacement. Wrapper of
bootstrap_perfect_model(init_pm, control[,
. . . ])

Bootstrap compute with replacement. Wrapper of

bootstrap_uninit_pm_ensemble_from_control_cftime(. . . )Create a pseudo-ensemble from control run.
bootstrap_uninitialized_ensemble(hind,
hist)

Resample uninitialized hindcast from historical mem-
bers.

dpp_threshold(control[, sig, iterations, dim]) Calc DPP significance levels from re-sampled dataset.
varweighted_mean_period_threshold(control[,
. . . ])

Calc the variance-weighted mean period significance
levels from re-sampled dataset.

climpred.bootstrap.bootstrap_compute

climpred.bootstrap.bootstrap_compute(hind, verif, hist=None, alignment=’same_verifs’,
metric=’pearson_r’, comparison=’m2e’, dim=’init’,
resample_dim=’member’, sig=95, iterations=500,
pers_sig=None, compute=<function com-
pute_hindcast>, resample_uninit=<function
bootstrap_uninitialized_ensemble>, refer-
ence_compute=<function compute_persistence>,
**metric_kwargs)

Bootstrap compute with replacement.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• verif (xr.Dataset) – Verification data.

• hist (xr.Dataset) – historical/uninitialized simulation.
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• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘m2e’.

• dim (str or list) – dimension(s) to apply metric over. default: ‘init’.

• resample_dim (str) – dimension to resample from. default: ‘member’:

- 'member': select a different set of members from hind
- 'init': select a different set of initializations from hind

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• iterations (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• compute (func) – function to compute skill. Choose from [climpred.prediction.
compute_perfect_model(),

climpred.prediction.compute_hindcast()].

• resample_uninit (func) – function to create an uninitialized ensem-
ble from a control simulation or uninitialized large ensemble. Choose from:
[bootstrap_uninitialized_ensemble(),

bootstrap_uninit_pm_ensemble_from_control()].

• reference_compute (func) – function to compute a reference forecast skill with. De-
fault: climpred.prediction.compute_persistence().

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results for the three different kinds of

predictions:

• init for the initialized hindcast hind and describes skill due to

initialization and external forcing

• uninit for the uninitialized historical hist and approximates skill

from external forcing

• pers for the reference forecast computed by reference_compute, which

defaults to compute_persistence

the different results:

• skill: skill values

• p: p value

• low_ci and high_ci: high and low ends of confidence intervals based

on significance threshold sig
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Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_hindcast

• climpred.bootstrap.bootstrap_perfect_model

climpred.bootstrap.bootstrap_hindcast

climpred.bootstrap.bootstrap_hindcast(hind, hist, verif, alignment=’same_verifs’, met-
ric=’pearson_r’, comparison=’e2o’, dim=’init’,
resample_dim=’member’, sig=95, iterations=500,
pers_sig=None, reference_compute=<function
compute_persistence>, **metric_kwargs)

Bootstrap compute with replacement. Wrapper of py:func:bootstrap_compute for hindcasts.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• verif (xr.Dataset) – Verification data.

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘e2o’.

• dim (str) – dimension to apply metric over. default: ‘init’.

• resample_dim (str or list) – dimension to resample from. default: ‘member’.

– ’member’: select a different set of members from hind

– ’init’: select a different set of initializations from hind

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• iterations (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• reference_compute (func) – function to compute a reference forecast skill with. De-
fault: climpred.prediction.compute_persistence().

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results for the three different kinds of

predictions:
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• init for the initialized hindcast hind and describes skill due to

initialization and external forcing

• uninit for the uninitialized historical hist and approximates skill

from external forcing

• pers for the reference forecast computed by reference_compute, which

defaults to compute_persistence

the different results:

• skill: skill values

• p: p value

• low_ci and high_ci: high and low ends of confidence intervals based

on significance threshold sig

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_compute

• climpred.prediction.compute_hindcast

Example

>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')['SST']
>>> hist = climpred.tutorial.load_dataset('CESM-LE')['SST']
>>> obs = load_dataset('ERSST')['SST']
>>> bootstrapped_skill = climpred.bootstrap.bootstrap_hindcast(hind, hist, obs)
>>> bootstrapped_skill.coords
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10

* kind (kind) object 'init' 'pers' 'uninit'

* results (results) <U7 'skill' 'p' 'low_ci' 'high_ci'
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climpred.bootstrap.bootstrap_perfect_model

climpred.bootstrap.bootstrap_perfect_model(init_pm, control, metric=’pearson_r’,
comparison=’m2e’, dim=None, re-
sample_dim=’member’, sig=95, it-
erations=500, pers_sig=None, ref-
erence_compute=<function com-
pute_persistence>, **metric_kwargs)

Bootstrap compute with replacement. Wrapper of py:func:bootstrap_compute for perfect-model frame-
work.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• verif (xr.Dataset) – Verification data.

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘m2e’.

• dim (str) – dimension to apply metric over. default: [‘init’, ‘member’].

• resample_dim (str or list) – dimension to resample from. default: ‘member’.

– ’member’: select a different set of members from hind

– ’init’: select a different set of initializations from hind

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• iterations (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• reference_compute (func) – function to compute a reference forecast skill with. De-
fault: climpred.prediction.compute_persistence().

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results for the three different kinds of

predictions:

• init for the initialized hindcast hind and describes skill due to

initialization and external forcing

• uninit for the uninitialized historical hist and approximates skill

from external forcing

• pers for the reference forecast computed by reference_compute, which

defaults to compute_persistence
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the different results:

• skill: skill values

• p: p value

• low_ci and high_ci: high and low ends of confidence intervals based

on significance threshold sig

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_compute

• climpred.prediction.compute_perfect_model

Example

>>> init = climpred.tutorial.load_dataset('MPI-PM-DP-1D')
>>> control = climpred.tutorial.load_dataset('MPI-control-1D')
>>> bootstrapped_s = climpred.bootstrap.bootstrap_perfect_model(init, control)
>>> bootstrapped_s.coords
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10

* kind (kind) object 'init' 'pers' 'uninit'

* results (results) <U7 'skill' 'p' 'low_ci' 'high_ci'

climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control_cftime

climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control_cftime(init_pm,
control)

Create a pseudo-ensemble from control run.

Bootstrap random numbers for years to construct an uninitialized ensemble from. This assumes a continous
control simulation without gaps.

Note: Needed for block bootstrapping a metric in perfect-model framework. Takes random segments of
length block_length from control based on dayofyear (and therefore assumes a constant climate control
simulation) and rearranges them into ensemble and member dimensions.

Parameters

• init_pm (xarray object) – initialized ensemble simulation.

• control (xarray object) – control simulation.

Returns uninitialized ensemble generated from control run.
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Return type uninit_pm (xarray object)

climpred.bootstrap.bootstrap_uninitialized_ensemble

climpred.bootstrap.bootstrap_uninitialized_ensemble(hind, hist)
Resample uninitialized hindcast from historical members.

Note: Needed for bootstrapping confidence intervals and p_values of a metric in the hindcast framework.
Takes hind.lead.size timesteps from historical at same forcing and rearranges them into ensemble and member
dimensions.

Parameters

• hind (xarray object) – hindcast.

• hist (xarray object) – historical uninitialized.

Returns uninitialize hindcast with hind.coords.

Return type uninit_hind (xarray object)

climpred.bootstrap.dpp_threshold

climpred.bootstrap.dpp_threshold(control, sig=95, iterations=500, dim=’time’, **dpp_kwargs)
Calc DPP significance levels from re-sampled dataset.

Reference:

• Feng, X., T. DelSole, and P. Houser. “Bootstrap Estimated Seasonal Potential Predictability of Global
Temperature and Precipitation.” Geophysical Research Letters 38, no. 7 (2011). https://doi.org/10/
ft272w.

See also:

• climpred.bootstrap._bootstrap_func

• climpred.stats.dpp

climpred.bootstrap.varweighted_mean_period_threshold

climpred.bootstrap.varweighted_mean_period_threshold(control, sig=95, itera-
tions=500, time_dim=’time’)

Calc the variance-weighted mean period significance levels from re-sampled dataset.

See also:

• climpred.bootstrap._bootstrap_func

• climpred.stats.varweighted_mean_period

Prediction
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compute_hindcast(hind, verif[, metric, . . . ]) Verify hindcast predictions against verification data.
compute_perfect_model(init_pm, control[, . . . ]) Compute a predictability skill score for a perfect-model

framework simulation dataset.

climpred.prediction.compute_hindcast

climpred.prediction.compute_hindcast(hind, verif, metric=’pearson_r’, comparison=’e2o’,
dim=’init’, alignment=’same_verifs’, add_attrs=True,
**metric_kwargs)

Verify hindcast predictions against verification data.

Parameters

• hind (xarray object) – Hindcast ensemble. Expected to follow package conventions:
* init : dim of initialization dates * lead : dim of lead time from those initializations
Additional dims can be member, lat, lon, depth, . . .

• verif (xarray object) – Verification data with some temporal overlap with the hind-
cast.

• metric (str) – Metric used in comparing the decadal prediction ensemble with the veri-
fication data. (see get_metric_class() and Metrics).

• comparison (str) – How to compare the decadal prediction ensemble to the verification
data:

– e2o : ensemble mean to verification data (Default)

– m2o : each member to the verification data

(see Comparisons)

• dim (str or list) – dimension to apply metric over. default: ‘init’

• alignment (str) – which inits or verification times should be aligned? - maximize/None:
maximize the degrees of freedom by slicing hind and verif to a common time frame at
each lead. - same_inits: slice to a common init frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.
- same_verif: slice to a common/consistent verification time frame prior to computing met-
ric. This philosophy follows the thought that each lead should be based on the same set of
verification dates.

• add_attrs (bool) – write climpred compute args to attrs. default: True

• **metric_kwargs (dict) – additional keywords to be passed to metric (see the argu-
ments required for a given metric in Metrics).

Returns Verification metric over lead reduced by dimension(s) dim.

Return type result (xarray object)

climpred.prediction.compute_perfect_model

climpred.prediction.compute_perfect_model(init_pm, control, metric=’pearson_r’, compari-
son=’m2e’, dim=None, add_attrs=True, **met-
ric_kwargs)

Compute a predictability skill score for a perfect-model framework simulation dataset.

Parameters
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• init_pm (xarray object) – ensemble with dims lead, init, member.

• control (xarray object) – control with dimension time.

• metric (str) – metric name, see climpred.utils.get_metric_class() and
(see Metrics).

• comparison (str) – comparison name defines what to take as forecast and verification
(see climpred.utils.get_comparison_class() and Comparisons).

• dim (str or list) – dimension to apply metric over. default: [‘member’, ‘init’]

• add_attrs (bool) – write climpred compute args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric. (see the arguments
required for a given metric in metrics.py)

Returns

skill score with dimensions as input ds without dim.

Return type skill (xarray object)

Reference

compute_persistence(hind, verif[, metric, . . . ]) Computes the skill of a persistence forecast from a sim-
ulation.

compute_uninitialized(hind, uninit, verif[,
. . . ])

Verify an uninitialized ensemble against verification
data.

climpred.reference.compute_persistence

climpred.reference.compute_persistence(hind, verif, metric=’pearson_r’, align-
ment=’same_verifs’, add_attrs=True, **met-
ric_kwargs)

Computes the skill of a persistence forecast from a simulation.

Parameters

• hind (xarray object) – The initialized ensemble.

• verif (xarray object) – Verification data.

• metric (str) – Metric name to apply at each lag for the persistence computation. Default:
‘pearson_r’

• alignment (str) – which inits or verification times should be aligned? - maximize/None:
maximize the degrees of freedom by slicing hind and verif to a common time frame at
each lead. - same_inits: slice to a common init frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.
- same_verif: slice to a common/consistent verification time frame prior to computing met-
ric. This philosophy follows the thought that each lead should be based on the same set of
verification dates.

• add_attrs (bool) – write climpred compute_persistence args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns
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Results of persistence forecast with the input metric applied.

Return type pers (xarray object)

Reference:

• Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug. Empirical methods in short-term
climate prediction. Oxford University Press, 2007.

climpred.reference.compute_uninitialized

climpred.reference.compute_uninitialized(hind, uninit, verif, metric=’pearson_r’,
comparison=’e2o’, dim=’time’, align-
ment=’same_verifs’, add_attrs=True, **met-
ric_kwargs)

Verify an uninitialized ensemble against verification data.

Note: Based on Decadal Prediction protocol, this should only be computed for the first lag and then projected
out to any further lags being analyzed.

Parameters

• hind (xarray object) – Initialized ensemble.

• uninit (xarray object) – Uninitialized ensemble.

• verif (xarray object) – Verification data with some temporal overlap with the unini-
tialized ensemble.

• metric (str) – Metric used in comparing the uninitialized ensemble with the verification
data.

• comparison (str) –

How to compare the uninitialized ensemble to the verification data:

– e2o : ensemble mean to verification data (Default)

– m2o : each member to the verification data

• alignment (str) – which inits or verification times should be aligned? - maximize/None:
maximize the degrees of freedom by slicing hind and verif to a common time frame at
each lead. - same_inits: slice to a common init frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.
- same_verif: slice to a common/consistent verification time frame prior to computing met-
ric. This philosophy follows the thought that each lead should be based on the same set of
verification dates.

• add_attrs (bool) – write climpred compute args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric

Returns Results from comparison at the first lag.

Return type u (xarray object)
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Metrics

Metric(name, function, positive, . . . [, . . . ]) Master class for all metrics.
_get_norm_factor(comparison) Get normalization factor for normalizing distance met-

rics.

climpred.metrics.Metric

class climpred.metrics.Metric(name, function, positive, probabilistic, unit_power,
long_name=None, aliases=None, minimum=None, maxi-
mum=None, perfect=None)

Master class for all metrics.

__init__(name, function, positive, probabilistic, unit_power, long_name=None, aliases=None, mini-
mum=None, maximum=None, perfect=None)

Metric initialization.

Parameters

• name (str) – name of metric.

• function (function) – metric function.

• positive (bool) – Is metric positively oriented? Higher metric values means higher
skill.

• probabilistic (bool) – Is metric probabilistic? False means deterministic.

• unit_power (float, int) – Power of the unit of skill based on unit of input, e.g.
input unit [m]: skill unit [(m)**unit_power]

• long_name (str, optional) – long_name of metric. Defaults to None.

• aliases (list of str, optional) – Allowed aliases for this metric. Defaults to
None.

• min (float, optional) – Minimum skill for metric. Defaults to None.

• max (float, optional) – Maxmimum skill for metric. Defaults to None.

• perfect (float, optional) – Perfect skill for metric. Defaults to None.

Returns metric class Metric.

Return type Metric

Methods

__init__(name, function, positive, . . . [, . . . ]) Metric initialization.

climpred.metrics._get_norm_factor

climpred.metrics._get_norm_factor(comparison)
Get normalization factor for normalizing distance metrics.

A distance metric is normalized by the standard deviation or variance of the verification product. The goal of a
normalized distance metric is to get a constant and comparable value of typically 1 (or 0 for metrics defined as
1 - metric), when the metric saturates and the predictability horizon is reached.
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To directly compare skill between different comparisons used, a factor is added in the normalized metric for-
mula, see Seferian et al. 2018. For example, NRMSE gets smaller in comparison m2e than m2m by design,
because the ensemble mean is always closer to individual ensemble members than ensemble members to each
other.

Note: This is used for NMSE, NRMSE, MSSS, NMAE.

Parameters comparison (class) – comparison class.

Returns normalization factor.

Return type fac (int)

Raises KeyError – if comparison is not matching.

Example

>>> # check skill saturation value of roughly 1 for different comparisons
>>> metric = 'nrmse'
>>> for c in ['m2m', 'm2e', 'm2c', 'e2c']:

s = compute_perfect_model(ds, control, metric=metric, comparison=c)
s.plot(label=' '.join([metric,c]))

>>> plt.legend()

Reference:

• Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the Decadal Predictability of
Land and Ocean Carbon Uptake.” Geophysical Research Letters, March 15, 2018. https://doi.org/10/
gdb424.

Comparisons

Comparison(name, function, hindcast, . . . [, . . . ]) Master class for all comparisons.

climpred.comparisons.Comparison

class climpred.comparisons.Comparison(name, function, hindcast, probabilistic,
long_name=None, aliases=None)

Master class for all comparisons.

__init__(name, function, hindcast, probabilistic, long_name=None, aliases=None)
Comparison initialization.

Parameters

• name (str) – name of comparison.

• function (function) – comparison function.

• hindcast (bool) – Can comparison be used in compute_hindcast? False means com-
pute_perfect_model

• probabilistic (bool) – Can this comparison be used for probabilistic metrics also?
Probabilistic metrics require multiple forecasts. False means that comparison is only de-
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terministic. True means that comparison can be used both deterministic and probabilistic.

• long_name (str, optional) – longname of comparison. Defaults to None.

• aliases (list of str, optional) – Allowed aliases for this comparison. De-
faults to None.

Returns comparison class Comparison.

Return type comparison

Methods

__init__(name, function, hindcast, probabilistic) Comparison initialization.

Statistics

autocorr(ds[, lag, dim, return_p]) Calculate the lagged correlation of time series.
corr(x, y[, dim, lag, return_p]) Computes the Pearson product-moment coefficient of

linear correlation.
decorrelation_time(da[, r, dim]) Calculate the decorrelaton time of a time series.
dpp(ds[, dim, m, chunk]) Calculates the Diagnostic Potential Predictability (dpp)
rm_poly(ds, order[, dim]) Returns xarray object with nth-order fit removed.
rm_trend(da[, dim]) Remove linear trend from time series.
varweighted_mean_period(da[, dim]) Calculate the variance weighted mean period of time se-

ries based on xrft.power_spectrum.

climpred.stats.autocorr

climpred.stats.autocorr(ds, lag=1, dim=’time’, return_p=False)
Calculate the lagged correlation of time series.

Parameters

• ds (xarray object) – Time series or grid of time series.

• lag (optional int) – Number of time steps to lag correlate to.

• dim (optional str) – Name of dimension to autocorrelate over.

• return_p (optional bool) – If True, return correlation coefficients and p values.

Returns

Pearson correlation coefficients.

If return_p, also returns their associated p values.

climpred.stats.corr

climpred.stats.corr(x, y, dim=’time’, lag=0, return_p=False)
Computes the Pearson product-moment coefficient of linear correlation.

Note: This version calculates the effective degrees of freedom, accounting for autocorrelation within each time
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series that could fluff the significance of the correlation.

Parameters

• x (xarray object) – Independent variable time series or grid of time series.

• y (xarray object) – Dependent variable time series or grid of time series

• dim (optional str) – Correlation dimension

• lag (optional int) – Lag to apply to correlaton, with x predicting y.

• return_p (optional bool) – If True, return correlation coefficients as well as p val-
ues.

Returns Pearson correlation coefficients If return_p True, associated p values.

References

• Wilks, Daniel S. Statistical methods in the atmospheric sciences. Vol. 100. Academic press, 2011.

• Lovenduski, Nicole S., and Nicolas Gruber. “Impact of the Southern Annular Mode on Southern Ocean
circulation and biology.” Geophysical Research Letters 32.11 (2005).

climpred.stats.decorrelation_time

climpred.stats.decorrelation_time(da, r=20, dim=’time’)
Calculate the decorrelaton time of a time series.

𝜏𝑑 = 1 + 2 *
𝑟∑︁

𝑘=1

(𝛼𝑘)
𝑘

Parameters

• da (xarray object) – Time series.

• r (optional int) – Number of iterations to run the above formula.

• dim (optional str) – Time dimension for xarray object.

Returns Decorrelation time of time series.

Reference:

• Storch, H. v, and Francis W. Zwiers. Statistical Analysis in Climate Research. Cambridge; New York:
Cambridge University Press, 1999., p.373

climpred.stats.dpp

climpred.stats.dpp(ds, dim=’time’, m=10, chunk=True)
Calculates the Diagnostic Potential Predictability (dpp)

𝐷𝑃𝑃unbiased(𝑚) =
𝜎2
𝑚 − 1

𝑚 · 𝜎2

𝜎2
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Note: Resplandy et al. 2015 and Seferian et al. 2018 calculate unbiased DPP in a slightly different way:
chunk=False.

Parameters

• ds (xr.DataArray) – control simulation with time dimension as years.

• dim (str) – dimension to apply DPP on. Default: time.

• m (optional int) – separation time scale in years between predictable low-freq compo-
nent and high-freq noise.

• chunk (optional boolean) – Whether chunking is applied. Default: True. If False,
then uses Resplandy 2015 / Seferian 2018 method.

Returns ds without time dimension.

Return type dpp (xr.DataArray)

References

• Boer, G. J. “Long Time-Scale Potential Predictability in an Ensemble of Coupled Climate Models.” Cli-
mate Dynamics 23, no. 1 (August 1, 2004): 29–44. https://doi.org/10/csjjbh.

• Resplandy, L., R. Séférian, and L. Bopp. “Natural Variability of CO2 and O2 Fluxes: What Can We Learn
from Centuries-Long Climate Models Simulations?” Journal of Geophysical Research: Oceans 120, no. 1
(January 2015): 384–404. https://doi.org/10/f63c3h.

• Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the Decadal Predictability of Land
and Ocean Carbon Uptake.” Geophysical Research Letters, March 15, 2018. https://doi.org/10/gdb424.

climpred.stats.rm_poly

climpred.stats.rm_poly(ds, order, dim=’time’)
Returns xarray object with nth-order fit removed.

Note: This automatically performs a linear interpolation across any NaNs in the time series.

Parameters

• ds (xarray object) – Time series to be detrended.

• order (int) – Order of polynomial fit to be removed.

• dim (optional str) – Dimension over which to remove the polynomial fit.

Returns xarray object with polynomial fit removed.

climpred.stats.rm_trend

climpred.stats.rm_trend(da, dim=’time’)
Remove linear trend from time series.

Parameters
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• ds (xarray object) – Time series to be detrended.

• dim (optional str) – Dimension over which to remove the linear trend.

Returns xarray object with linear trend removed.

climpred.stats.varweighted_mean_period

climpred.stats.varweighted_mean_period(da, dim=’time’, **kwargs)
Calculate the variance weighted mean period of time series based on xrft.power_spectrum.

𝑃𝑥 =

∑︀
𝑘 𝑉 (𝑓𝑘, 𝑥)∑︀

𝑘 𝑓𝑘 · 𝑉 (𝑓𝑘, 𝑥)

Parameters

• da (xarray object) – input data including dim.

• dim (optional str) – Name of time dimension.

• **kwargs see xrft.power_spectrum (for) –

Reference:

• Branstator, Grant, and Haiyan Teng. “Two Limits of Initial-Value Decadal Predictability in a CGCM.”
Journal of Climate 23, no. 23 (August 27, 2010): 6292-6311. https://doi.org/10/bwq92h.

See also: https://xrft.readthedocs.io/en/latest/api.html#xrft.xrft.power_spectrum

Tutorial

load_dataset([name, cache, cache_dir, . . . ]) Load example data or a mask from an online repository.

climpred.tutorial.load_dataset

climpred.tutorial.load_dataset(name=None, cache=True, cache_dir=’~/.climpred_data’,
github_url=’https://github.com/bradyrx/climpred-data’,
branch=’master’, extension=None, proxy_dict=None, **kws)

Load example data or a mask from an online repository.

Parameters

• name – (str, default None) Name of the netcdf file containing the dataset, without the .nc
extension. If None, this function prints out the available datasets to import.

• cache_dir – (str, optional) The directory in which to search for and cache the data.

• cache – (bool, optional) If True, cache data locally for use on later calls.

• github_url – (str, optional) Github repository where the data is stored.

• branch – (str, optional) The git branch to download from.

• extension – (str, optional) Subfolder within the repository where the data is stored.

• proxy_dict – (dict, optional) Dictionary with keys as either ‘http’ or ‘https’ and values
as the proxy server. This is useful if you are on a work computer behind a firewall and need
to use a proxy out to download data.
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• kws – (dict, optional) Keywords passed to xarray.open_dataset

Returns The desired xarray dataset.

Examples

>>> from climpred.tutorial import load_dataset()
>>> proxy_dict = {'http': '127.0.0.1'}
>>> ds = load_dataset('FOSI-SST', cache=False, proxy_dict=proxy_dict)

Preprocessing

load_hindcast([inits, members, preprocess, . . . ]) Load multi-member, multi-initialization hindcast exper-
iment into one xr.Dataset compatible with climpred.

rename_to_climpred_dims(xro) Rename existing dimension in xr.object xro to
CLIMPRED_ENSEMBLE_DIMS from existing dimen-
sion names.

rename_SLM_to_climpred_dims(xro) Rename ensemble dimensions common to SubX or
CESM output:

climpred.preprocessing.shared.load_hindcast

climpred.preprocessing.shared.load_hindcast(inits=range(1961, 1965), members=range(1,
3), preprocess=None, lead_offset=1, paral-
lel=True, engine=None, get_path=<function
get_path>, **get_path_kwargs)

Load multi-member, multi-initialization hindcast experiment into one xr.Dataset compatible with climpred.

Parameters

• inits (list, array) – List of initializations to be loaded. Defaults to range(1961,
1965).

• members (list, array) – List of initializations to be loaded. Defaults to range(1, 3).

• preprocess (function) – preprocess function accepting and returning xr.Dataset only.
To be passed to xarray.open_dataset(). Defaults to None.

• parallel (bool) – passed to xr.open_mfdataset. Defaults to True.

• engine (str) – passed to xr.open_mfdataset. Defaults to None.

:param .. note::: To load MPI-ESM grb files, pass engine=’pynio’. :param get_path: get_path function specific
to modelling center output

format. Defaults to get_path().

Parameters **get_path_kwargs (dict) – parameters passed to **get_path.

Returns climpred compatible dataset with dims: member, init, lead.

Return type xr.Dataset
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climpred.preprocessing.shared.rename_to_climpred_dims

climpred.preprocessing.shared.rename_to_climpred_dims(xro)
Rename existing dimension in xr.object xro to CLIMPRED_ENSEMBLE_DIMS from existing dimension names.
This function attempts to autocorrect dimension names to climpred standards. e.g., ensemble_member becomes
member and lead_time becomes lead, and time gets renamed to lead.

Parameters

• xro (xr.object) – input from DCPP via intake-esm

• dimension names like dcpp_init_year, time, member_id.
(containing) –

Returns climpred compatible with dimensions: member, init, lead.

Return type xr.object

climpred.preprocessing.shared.rename_SLM_to_climpred_dims

climpred.preprocessing.shared.rename_SLM_to_climpred_dims(xro)
Rename ensemble dimensions common to SubX or CESM output:

• S : Refers to start date and is changed to init

• L : Refers to lead time and is changed to lead

• M: Refers to ensemble member and is changed to member

Parameters xro (xr.object) – input from CESM/SubX containing dimensions: S, L, M.

Returns climpred compatible with dimensions: member, init, lead.

Return type xr.object

get_path([dir_base_experiment, member, . . . ]) Get the path of a file for MPI-ESM standard output file
names and directory.

climpred.preprocessing.mpi.get_path

climpred.preprocessing.mpi.get_path(dir_base_experiment=’/work/bm1124/m300086/CMIP6/experiments’,
member=1, init=1960, model=’hamocc’, out-
put_stream=’monitoring_ym’, timestr=’*1231’, end-
ing=’nc’)

Get the path of a file for MPI-ESM standard output file names and directory.

Parameters

• dir_base_experiment (str) – Path of experiments folder. Defaults to
“/work/bm1124/m300086/CMIP6/experiments”.

• member (int) – member label. Defaults to 1.

• init (int) – initialization label. Typically year. Defaults to 1960.

• model (str) – submodel name. Defaults to “hamocc”. Allowed: [‘echam6’, ‘jsbach’,
‘mpiom’, ‘hamocc’].
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• output_stream (str) – output_stream name. Defaults to “monitoring_ym”. Allowed:
[‘data_2d_mm’, ‘data_3d_ym’, ‘BOT_mm’, . . . ]

• timestr (str) – timestr likely including *. Defaults to “*1231”.

• ending (str) – ending indicating file format. Defaults to “nc”. Allowed: [‘nc’, ‘grb’].

Returns path of requested file(s)

Return type str

2.14 What’s New

2.14.1 climpred v2.1.0 (2020-06-08)

Breaking Changes

• Keyword bootstrap has been replaced with iterations. We feel that this more accurately describes the
argument, since “bootstrap” is really the process as a whole. (GH#354) Aaron Spring.

New Features

• HindcastEnsemble and PerfectModelEnsemble now use an HTML representation, following the
more recent versions of xarray. (GH#371) Aaron Spring.

• HindcastEnsemble.verify() now takes reference=... keyword. Current options are
'persistence' for a persistence forecast of the observations and 'historical' for some historical
reference, such as an uninitialized/forced run. (GH#341) Riley X. Brady.

• We now only enforce a union of the initialization dates with observations if reference='persistence'
for HindcastEnsemble. This is to ensure that the same set of initializations is used by the observations to
construct a persistence forecast. (GH#341) Riley X. Brady.

• compute_perfect_model() now accepts initialization (init) as cftime and int. cftime is now
implemented into the bootstrap uninitialized functions for the perfect model configuration. (GH#332) Aaron
Spring.

• New explicit keywords in bootstrap functions for resampling_dim and reference_compute (GH#320)
Aaron Spring.

• Logging now included for compute_hindcast which displays the inits and verification dates used at
each lead (GH#324) Aaron Spring, (GH#338) Riley X. Brady. See (logging).

• New explicit keywords added for alignment of verification dates and initializations. (GH#324) Aaron Spring.
See (alignment)

– 'maximize': Maximize the degrees of freedom by slicing hind and verif to a common time frame
at each lead. (GH#338) Riley X. Brady.

– 'same_inits': slice to a common init frame prior to computing metric. This philosophy follows the
thought that each lead should be based on the same set of initializations. (GH#328) Riley X. Brady.

– 'same_verifs': slice to a common/consistent verification time frame prior to computing metric. This
philosophy follows the thought that each lead should be based on the same set of verification dates.
(GH#331) Riley X. Brady.
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Performance

The major change for this release is a dramatic speedup in bootstrapping functions, led by Aaron Spring. We fo-
cused on scalability with dask and found many places we could compute skill simultaneously over all bootstrapped
ensemble members rather than at each iteration.

• Bootstrapping uninitialized skill in the perfect model framework is now sped up significantly for annual lead
resolution. (GH#332) Aaron Spring.

• General speedup in bootstrap_hindcast() and bootstrap_perfect_model(): (GH#285) Aaron
Spring.

– Properly implemented handling for lazy results when inputs are chunked.

– User gets warned when chunking potentially unnecessarily and/or inefficiently.

Bug Fixes

• Alignment options now account for differences in the historical time series if reference='historical'.
(GH#341) Riley X. Brady.

Internals/Minor Fixes

• Added a Code of Conduct (GH#285) Aaron Spring.

• Gather all pytest.fixture``s in ``conftest.py. (GH#313) Aaron Spring.

• Move x_METRICS and COMPARISONS to metrics.py and comparisons.py in order to avoid circular
import dependencies. (GH#315) Aaron Spring.

• asv benchmarks added for HindcastEnsemble (GH#285) Aaron Spring.

• Ignore irrelevant warnings in pytest and mark slow tests (GH#333) Aaron Spring.

• Default CONCAT_KWARGS now in all xr.concat to speed up bootstrapping. (GH#330) Aaron Spring.

• Remove member coords for m2c comparison for probabilistic metrics. (GH#330) Aaron Spring.

• Refactored compute_hindcast() and compute_perfect_model(). (GH#330) Aaron Spring.

• Changed lead0 coordinate modifications to be compliant with xarray=0.15.1 in
compute_persistence(). (GH#348) Aaron Spring.

• Exchanged my_quantile with xr.quantile(skipna=False). (GH#348) Aaron Spring.

• Remove sig from plot_bootstrapped_skill_over_leadyear(). (GH#351) Aaron Spring.

• Require xskillscore v0.0.15 and use their functions for effective sample size-based metrics. (:pr: 353)
Riley X. Brady.

• Faster bootstrapping without replacement used in threshold functions of climpred.stats (GH#354) Aaron
Spring.

• Require cftime v1.1.2, which modifies their object handling to create 200-400x speedups in some basic
operations. (GH#356) Riley X. Brady.

• Resample first and then calculate skill in bootstrap_perfect_model() and
bootstrap_hindcast() (GH#355) Aaron Spring.
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Documentation

• Added demo to setup your own raw model output compliant to climpred (GH#296) Aaron Spring. See (here).

• Added demo using intake-esm with climpred (GH#296) Aaron Spring. See (here).

• Added Verification Alignment page explaining how initializations are selected and aligned with verification
data. (GH#328) Riley X. Brady. See (here).

2.14.2 climpred v2.0.0 (2020-01-22)

New Features

• Add support for days, pentads, weeks, months, seasons for lead time resolution. climpred now
requires a lead attribute “units” to decipher what resolution the predictions are at. (GH#294) Kathy Pegion
and Riley X. Brady.

>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')
>>> hind.lead.attrs['units'] = 'years'

• HindcastEnsemble now has .add_observations() and .get_observations() methods. These
are the same as .add_reference() and .get_reference(), which will be deprecated eventually. The
name change clears up confusion, since “reference” is the appropriate name for a reference forecast, e.g. persis-
tence. (GH#310) Riley X. Brady.

• HindcastEnsemble now has .verify() function, which duplicates the .compute_metric() func-
tion. We feel that .verify() is more clear and easy to write, and follows the terminology of the field.
(GH#310) Riley X. Brady.

• e2o and m2o are now the preferred keywords for comparing hindcast ensemble means and ensemble members
to verification data, respectively. (GH#310) Riley X. Brady.

Documentation

• New example pages for subseasonal-to-seasonal prediction using climpred. (GH#294) Kathy Pegion

– Calculate the skill of the MJO index as a function of lead time (link).

– Calculate the skill of the MJO index as a function of lead time for weekly data (link).

– Calculate ENSO skill as a function of initial month vs. lead time (link).

– Calculate Seasonal ENSO skill (link).

• Comparisons page rewritten for more clarity. (GH#310) Riley X. Brady.

Bug Fixes

• Fixed m2m broken comparison issue and removed correction (GH#290) Aaron Spring.

Internals/Minor Fixes

• Updates to xskillscore v0.0.12 to get a 30-50% speedup in compute functions that rely on metrics from
there. (GH#309) Riley X. Brady.
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• Stacking dims is handled by comparisons, no need for internal keyword stack_dims. Therefore
comparison now takes metric as argument instead. (GH#290) Aaron Spring.

• assign_attrs now carries dim (GH#290) Aaron Spring.

• “reference” changed to “verif” throughout hindcast compute functions. This is more clear, since “reference”
usually refers to a type of forecast, such as persistence. (GH#310) Riley X. Brady.

• Comparison objects can now have aliases. (GH#310) Riley X. Brady.

2.14.3 climpred v1.2.1 (2020-01-07)

Depreciated

• mad no longer a keyword for the median absolute error metric. Users should now use
median_absolute_error, which is identical to changes in xskillscore version 0.0.10. (GH#283)
Riley X. Brady

• pacc no longer a keyword for the p value associated with the Pearson product-moment correlation, since it is
used by the correlation coefficient. (GH#283) Riley X. Brady

• msss no longer a keyword for the Murphy’s MSSS, since it is reserved for the standard MSSS. (GH#283) Riley
X. Brady

New Features

• Metrics pearson_r_eff_p_value and spearman_r_eff_p_value account for autocorrelation in
computing p values. (GH#283) Riley X. Brady

• Metric effective_sample_size computes number of independent samples between two time series being
correlated. (GH#283) Riley X. Brady

• Added keywords for metrics: (GH#283) Riley X. Brady

– 'pval' for pearson_r_p_value

– ['n_eff', 'eff_n'] for effective_sample_size

– ['p_pval_eff', 'pvalue_eff', 'pval_eff'] for pearson_r_eff_p_value

– ['spvalue', 'spval'] for spearman_r_p_value

– ['s_pval_eff', 'spvalue_eff', 'spval_eff'] for spearman_r_eff_p_value

– 'nev' for nmse

Internals/Minor Fixes

• climpred now requires xarray version 0.14.1 so that the drop_vars() keyword used in our package
does not throw an error. (GH#276) Riley X. Brady

• Update to xskillscore version 0.0.10 to fix errors in weighted metrics with pairwise NaNs. (GH#283) Riley
X. Brady

• doc8 added to pre-commit to have consistent formatting on .rst files. (GH#283) Riley X. Brady

• Remove proper attribute on Metric class since it isn’t used anywhere. (GH#283) Riley X. Brady

• Add testing for effective p values. (GH#283) Riley X. Brady
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• Add testing for whether metric aliases are repeated/overwrite each other. (GH#283) Riley X. Brady

• ppp changed to msess, but keywords allow for ppp and msss still. (GH#283) Riley X. Brady

Documentation

• Expansion of metrics documentation with much more detail on how metrics are computed, their keywords,
references, min/max/perfect scores, etc. (GH#283) Riley X. Brady

• Update terminology page with more information on metrics terminology. (GH#283) Riley X. Brady

2.14.4 climpred v1.2.0 (2019-12-17)

Depreciated

• Abbreviation pval depreciated. Use p_pval for pearson_r_p_value instead. (GH#264) Aaron Spring.

New Features

• Users can now pass a custom metric or comparison to compute functions. (GH#268) Aaron Spring.

– See user-defined-metrics and user-defined-comparisons.

• New deterministic metrics (see metrics). (GH#264) Aaron Spring.

– Spearman ranked correlation (spearman_r)

– Spearman ranked correlation p-value (spearman_r_p_value)

– Mean Absolute Deviation (mad)

– Mean Absolute Percent Error (mape)

– Symmetric Mean Absolute Percent Error (smape)

• Users can now apply arbitrary xarray methods to HindcastEnsemble and PerfectModelEnsemble.
(GH#243) Riley X. Brady.

– See the Prediction Ensemble objects demo page.

• Add “getter” methods to HindcastEnsemble and PerfectModelEnsemble to retrieve xarray
datasets from the objects. (GH#243) Riley X. Brady.

>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')
>>> ref = climpred.tutorial.load_dataset('ERSST')
>>> hindcast = climpred.HindcastEnsemble(hind)
>>> hindcast = hindcast.add_reference(ref, 'ERSST')
>>> print(hindcast)
<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
ERSST:

SST (time) float32 ...
Uninitialized:

None
>>> print(hindcast.get_initialized())
<xarray.Dataset>
Dimensions: (init: 64, lead: 10, member: 10)

(continues on next page)
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(continued from previous page)

Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* member (member) int32 1 2 3 4 5 6 7 8 9 10

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0
→˓2017.0
Data variables:

SST (init, lead, member) float64 ...
>>> print(hindcast.get_reference('ERSST'))
<xarray.Dataset>
Dimensions: (time: 61)
Coordinates:

* time (time) int64 1955 1956 1957 1958 1959 ... 2011 2012 2013 2014
→˓2015
Data variables:

SST (time) float32 ...

• metric_kwargs can be passed to Metric. (GH#264) Aaron Spring.

– See metric_kwargs under metrics.

Bug Fixes

• compute_metric() doesn’t drop coordinates from the initialized hindcast ensemble anymore. (GH#258)
Aaron Spring.

• Metric uacc does not crash when ppp negative anymore. (GH#264) Aaron Spring.

• Update xskillscore to version 0.0.9 to fix all-NaN issue with pearson_r and pearson_r_p_value
when there’s missing data. (GH#269) Riley X. Brady.

Internals/Minor Fixes

• Rewrote varweighted_mean_period() based on xrft. Changed time_dim to dim. Function no
longer drops coordinates. (GH#258) Aaron Spring

• Add dim='time' in dpp(). (GH#258) Aaron Spring

• Comparisons m2m, m2e rewritten to not stack dims into supervector because this is now done in
xskillscore. (GH#264) Aaron Spring

• Add tqdm progress bar to bootstrap_compute(). (GH#244) Aaron Spring

• Remove inplace behavior for HindcastEnsemble and PerfectModelEnsemble. (GH#243) Riley X.
Brady

– See demo page on prediction ensemble objects

• Added tests for chunking with dask. (GH#258) Aaron Spring

• Fix test issues with esmpy 8.0 by forcing esmpy 7.1 (GH#269). Riley X. Brady

• Rewrote metrics and comparisons as classes to accomodate custom metrics and comparisons. (GH#268)
Aaron Spring

– See user-defined-metrics and user-defined-comparisons.
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Documentation

• Add examples notebook for temporal and spatial smoothing. (GH#244) Aaron Spring

• Add documentation for computing a metric over a specified dimension. (GH#244) Aaron Spring

• Update API to be more organized with individual function/class pages. (GH#243) Riley X. Brady.

• Add page describing the HindcastEnsemble and PerfectModelEnsemble objects more clearly.
(GH#243) Riley X. Brady

• Add page for publications and helpful links. (GH#270) Riley X. Brady.

2.14.5 climpred v1.1.0 (2019-09-23)

Features

• Write information about skill computation to netcdf attributes(GH#213) Aaron Spring

• Temporal and spatial smoothing module (GH#224) Aaron Spring

• Add metrics brier_score, threshold_brier_score and crpss_es (GH#232) Aaron Spring

• Allow compute_hindcast and compute_perfect_model to specify which dimension dim to calculate metric over
(GH#232) Aaron Spring

Bug Fixes

• Correct implementation of probabilistic metrics from xskillscore in compute_perfect_model, boot-
strap_perfect_model, compute_hindcast and bootstrap_hindcast, now requires xskillscore>=0.05 (GH#232)
Aaron Spring

Internals/Minor Fixes

• Rename .stats.DPP to dpp (GH#232) Aaron Spring

• Add matplotlib as a main dependency so that a direct pip installation works (GH#211) Riley X. Brady.

• climpred is now installable from conda-forge (GH#212) Riley X. Brady.

• Fix erroneous descriptions of sample datasets (GH#226) Riley X. Brady.

• Benchmarking time and peak memory of compute functions with asv (GH#231) Aaron Spring

Documentation

• Add scope of package to docs for clarity for users and developers. (GH#235) Riley X. Brady.

2.14.6 climpred v1.0.1 (2019-07-04)

Bug Fixes

• Accomodate for lead-zero within the lead dimension (GH#196) Riley X. Brady.

• Fix issue with adding uninitialized ensemble to HindcastEnsemble object (GH#199) Riley X. Brady.
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• Allow max_dof keyword to be passed to compute_metric and compute_persistence for
HindcastEnsemble (GH#199) Riley X. Brady.

Internals/Minor Fixes

• Force xskillscore version 0.0.4 or higher to avoid ImportError (GH#204) Riley X. Brady.

• Change max_dfs keyword to max_dof (GH#199) Riley X. Brady.

• Add testing for HindcastEnsemble and PerfectModelEnsemble (GH#199) Riley X. Brady

2.14.7 climpred v1.0.0 (2019-07-03)

climpred v1.0.0 represents the first stable release of the package. It includes HindcastEnsemble and
PerfectModelEnsemble objects to perform analysis with. It offers a suite of deterministic and probabilistic met-
rics that are optimized to be run on single time series or grids of data (e.g., lat, lon, and depth). Currently, climpred
only supports annual forecasts.

Features

• Bootstrap prediction skill based on resampling with replacement consistently in ReferenceEnsemble and
PerfectModelEnsemble. (GH#128) Aaron Spring

• Consistent bootstrap function for climpred.stats functions via bootstrap_func wrapper. (GH#167)
Aaron Spring

• many more metrics: _msss_murphy, _less and probabilistic _crps, _crpss (GH#128) Aaron Spring

Bug Fixes

• compute_uninitialized now trims input data to the same time window. (GH#193) Riley X. Brady

• rm_poly now properly interpolates/fills NaNs. (GH#192) Riley X. Brady

Internals/Minor Fixes

• The climpred version can be printed. (GH#195) Riley X. Brady

• Constants are made elegant and pushed to a separate module. (GH#184) Andrew Huang

• Checks are consolidated to their own module. (GH#173) Andrew Huang

Documentation

• Documentation built extensively in multiple PRs.

2.14.8 climpred v0.3 (2019-04-27)

climpred v0.3 really represents the entire development phase leading up to the version 1 release. This was done in
collaboration between Riley X. Brady, Aaron Spring, and Andrew Huang. Future releases will have less additions.

148 Chapter 2. Installation

https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/204
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/167
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/193
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/192
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/195
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/184
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/173
https://github.com/ahuang11
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/ahuang11


climpred

Features

• Introduces object-oriented system to climpred, with classes ReferenceEnsemble and
PerfectModelEnsemble. (GH#86) Riley X. Brady

• Expands bootstrapping module for perfect-module configurations. (GH#78, GH#87) Aaron Spring

• Adds functions for computing Relative Entropy (GH#73) Aaron Spring

• Sets more intelligible dimension expectations for climpred (GH#98, GH#105) Riley X. Brady and Aaron
Spring:

– init: initialization dates for the prediction ensemble

– lead: retrospective forecasts from prediction ensemble; returned dimension for prediction calculations

– time: time dimension for control runs, references, etc.

– member: ensemble member dimension.

• Updates open_dataset to display available dataset names when no argument is passed. (GH#123) Riley X.
Brady

• Change ReferenceEnsemble to HindcastEnsemble. (GH#124) Riley X. Brady

• Add probabilistic metrics to climpred. (GH#128) Aaron Spring

• Consolidate separate perfect-model and hindcast functions into singular functions (GH#128) Aaron Spring

• Add option to pass proxy through to open_dataset for firewalled networks. (GH#138) Riley X. Brady

Bug Fixes

• xr_rm_poly can now operate on Datasets and with multiple variables. It also interpolates across NaNs in
time series. (GH#94) Andrew Huang

• Travis CI, treon, and pytest all run for automated testing of new features. (GH#98, GH#105, GH#106)
Riley X. Brady and Aaron Spring

• Clean up check_xarray decorators and make sure that they work. (GH#142) Andrew Huang

• Ensures that help() returns proper docstring even with decorators. (GH#149) Andrew Huang

• Fixes bootstrap so p values are correct. (GH#170) Aaron Spring

Internals/Minor Fixes

• Adds unit testing for all perfect-model comparisons. (GH#107) Aaron Spring

• Updates CESM-LE uninitialized ensemble sample data to have 34 members. (GH#113) Riley X. Brady

• Adds MPI-ESM hindcast, historical, and assimilation sample data. (GH#119) Aaron Spring

• Replaces check_xarray with a decorator for checking that input arguments are xarray objects. (GH#120)
Andrew Huang

• Add custom exceptions for clearer error reporting. (GH#139) Riley X. Brady

• Remove “xr” prefix from stats module. (GH#144) Riley X. Brady

• Add codecoverage for testing. (GH#152) Riley X. Brady

• Update exception messages for more pretty error reporting. (GH#156) Andrew Huang
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• Add pre-commit and flake8/black check in CI. (GH#163) Riley X. Brady

• Change loadutils module to tutorial and open_dataset to load_dataset. (GH#164) Riley X.
Brady

• Remove predictability horizon function to revisit for v2. (GH#165) Riley X. Brady

• Increase code coverage through more testing. (GH#167) Aaron Spring

• Consolidates checks and constants into modules. (GH#173) Andrew Huang

2.14.9 climpred v0.2 (2019-01-11)

Name changed to climpred, developed enough for basic decadal prediction tasks on a perfect-model ensemble and
reference-based ensemble.

2.14.10 climpred v0.1 (2018-12-20)

Collaboration between Riley Brady and Aaron Spring begins.

2.15 Helpful Links

We hope to curate in the climpred documentation a comprehensive report of terminology, best practices, analysis
methods, etc. in the prediction community. Here we suggest other resources for initialized prediction of the Earth
system to round out the information provided in our documentation.

2.15.1 Forecast Verification

• CAWCR Forecast Verification Overview: A nice overview of forecast verification, including a suite of metrics
and their derivation.

2.16 Publications Using climpred

Below is a list of publications that have made use of climpred in their analysis. You can nod to climpred, e.g.,
in your acknowledgements section to help build the community. The main developers of the package intend to release
a manuscript documenting climpred in 2020 with a citable DOI, so this can be referenced in the future.

Feel free to open a Pull Request to add your publication to the list!

2.16.1 2020

• Brady, R.X., Lovenduski, N.S., Yeager, S.G., Long, M.C., Lindsay, K (2020). Skillful multiyear predictions
of ocean acidification in the California Current System. Nature Communications, 11, 2166. https://doi.org/10.
1038/s41467-020-15722-x

• Spring, A., Ilyina, T. (2020). Predictability horizons in theglobal carbon cycle inferred from a perfect-model
framework. Geophysical Research Letters, 47, e2019GL085311. https://doi.org/10.1029/2019GL085311
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2.17 Contribution Guide

Contributions are highly welcomed and appreciated. Every little help counts, so do not hesitate! You can make a high
impact on climpred just by using it and reporting issues.

The following sections cover some general guidelines regarding development in climpred for maintainers and
contributors.

Please also review our Code of Conduct.

Nothing here is set in stone and can’t be changed. Feel free to suggest improvements or changes in the workflow.

Contribution links

• Contribution Guide

– Feature requests and feedback

– Report bugs

– Fix bugs

– Write documentation

– Preparing Pull Requests

2.17.1 Feature requests and feedback

We are eager to hear about your requests for new features and any suggestions about the API, infrastructure, and so
on. Feel free to submit these as issues with the label “feature request.”

Please make sure to explain in detail how the feature should work and keep the scope as narrow as possible. This will
make it easier to implement in small PRs.

2.17.2 Report bugs

Report bugs for climpred in the issue tracker with the label “bug”.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting, specifically the Python interpreter
version, installed libraries, and climpred version.

• Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should pass, that is a very useful commit to make as well,
even if you cannot fix the bug itself.

2.17.3 Fix bugs

Look through the GitHub issues for bugs.

Talk to developers to find out how you can fix specific bugs.
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2.17.4 Write documentation

climpred could always use more documentation. What exactly is needed?

• More complementary documentation. Have you perhaps found something unclear?

• Docstrings. There can never be too many of them.

• Example notebooks with different Earth System Models, lead times, etc. – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface, without using a local copy. This can be
convenient for small fixes.

Our documentation is written in reStructuredText. You can follow our conventions in already written documents.
Some helpful guides are located here and here.

Note: Build the documentation locally with the following command:

$ conda env update -f ci/environment-dev-3.6.yml
$ cd docs
$ make html

The built documentation should be available in the docs/build/.

If you need to add new functions to the API, run sphinx-autogen -o api api.rst from the docs/source
directory and add the functions to api.rst.

2.17.5 Preparing Pull Requests

1. Fork the climpred GitHub repository. It’s fine to use climpred as your fork repository name because it will
live under your user.

2. Clone your fork locally using git, connect your repository to the upstream (main project), and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/climpred.git
$ cd climpred
$ git remote add upstream git@github.com:bradyrx/climpred.git

# now, to fix a bug or add feature create your own branch off "master":

$ git checkout -b your-bugfix-feature-branch-name master

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Install dependencies into a new conda environment:

$ conda env update -f ci/environment-dev-3.7.yml
$ conda activate climpred-dev

4. Make an editable install of climpred by running:

$ pip install -e .

5. Install pre-commit and its hook on the climpred repo:
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$ pip install --user pre-commit
$ pre-commit install

Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks to
ensure code-style and code formatting is consistent.

Now you have an environment called climpred-dev that you can work in. You’ll need to make
sure to activate that environment next time you want to use it after closing the terminal or your
system.

You can now edit your local working copy and run/add tests as necessary. Please follow PEP-8 for
naming. When committing, pre-commit will modify the files as needed, or will generally be quite
clear about what you need to do to pass the commit test.

6. Break your edits up into reasonably sized commits:

$ git commit -a -m "<commit message>"
$ git push -u

7. Run all the tests

Now running tests is as simple as issuing this command:

$ pytest climpred

Check that your contribution is covered by tests and therefore increases the overall test coverage:

$ coverage run --source climpred -m py.test
$ coverage report
$ coveralls

Please stick to xarray’s testing recommendations.

1. Running the performance test suite

Performance matters and it is worth considering whether your code has introduced performance regressions. climpred
is starting to write a suite of benchmarking tests using asv to enable easy monitoring of the performance of critical
climpred operations. These benchmarks are all found in the asv_bench directory.

If you need to run a benchmark, change your directory to asv_bench/ and run:

$ asv continuous -f 1.1 upstream/master HEAD

You can replace HEAD with the name of the branch you are working on, and report benchmarks that changed by more
than 10%. The command uses conda by default for creating the benchmark environments.

Running the full benchmark suite can take up to half an hour and use up a few GBs of RAM. Usually it is sufficient
to paste only a subset of the results into the pull request to show that the committed changes do not cause unexpected
performance regressions. You can run specific benchmarks using the -b flag, which takes a regular expression. For
example, this will only run tests from a asv_bench/benchmarks/benchmarks_perfect_model.py file:

$ asv continuous -f 1.1 upstream/master HEAD -b ^benchmarks_perfect_model

If you want to only run a specific group of tests from a file, you can do it using . as a separator. For example:

$ asv continuous -f 1.1 upstream/master HEAD -b benchmarks_perfect_model.Compute.time_
→˓bootstrap_perfect_model
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will only run the time_bootstrap_perfect_model benchmark of class Compute defined in
benchmarks_perfect_model.py.

1. Create a new changelog entry in CHANGELOG.rst:

• The entry should be entered as:

<description> (:pr:`#<pull request number>`) `<author's names>`_

where <description> is the description of the PR related to the change and <pull request
number> is the pull request number and <author's names> are your first and last names.

• Add yourself to list of authors at the end of CHANGELOG.rst file if not there yet, in alphabetical order.

1. Add yourself to the contributors list via docs/source/contributors.rst.

1. Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/climpred
compare: your-branch-name

base-fork: bradyrx/climpred
base: master

Note that you can create the Pull Request while you’re working on this. The PR will update as you add more commits.
climpred developers and contributors can then review your code and offer suggestions.

2.18 Code of Conduct

2.18.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

2.18.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting
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2.18.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

2.18.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

2.18.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team.
All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate
to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

2.18.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage, and xgcm. For answers to common
questions about this code of conduct, see Contributor Covenant.

2.19 Release Procedure

We follow semantic versioning, e.g., v1.0.0. A major version causes incompatible API changes, a minor version adds
functionality, and a patch covers bug fixes.

1. Create a new branch release-vX.x.x with the version for the release.

• Update CHANGELOG.rst

• Make sure all new changes, features are reflected in the documentation.

1. Open a new pull request for this branch targeting master

2. After all tests pass and the PR has been approved, merge the PR into master

3. Tag a release and push to github:

$ git tag -a v1.0.0 -m "Version 1.0.0"
$ git push origin master --tags

4. Build and publish release on PyPI:
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$ git clean -xfd # remove any files not checked into git
$ python setup.py sdist bdist_wheel --universal # build package
$ twine upload dist/* # register and push to pypi

5. Update the stable branch (used by ReadTheDocs):

$ git checkout stable
$ git rebase master
$ git push -f origin stable
$ git checkout master

6. Go to https://readthedocs.org and add the new version to “Active Versions” under the version tab. Force-build
“stable” if it isn’t already building.

7. Update climpred conda-forge feedstock

• Fork climpred-feedstock repository

• Clone this fork and edit recipe:

$ git clone git@github.com:username/climpred-feedstock.git
$ cd climpred-feedstock
$ cd recipe
$ # edit meta.yaml

• Update version

• Get sha256 from pypi.org for climpred

• Check that requirements.txt from the main climpred repo is accounted for in meta.yaml
from the feedstock.

• Fill in the rest of information as described here

• Commit and submit a PR

2.20 Contributors

2.20.1 Core Developers

• Riley X. Brady (github)

• Aaron Spring (github)

2.20.2 Contributors

• Andrew Huang (github)

• Kathy Pegion (github)

For a list of all the contributions, see the github contribution graph.
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