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Version 1 Release

We currently only support annual forecasts, but our focus is to support sub-annual
(e.g., seasonal, monthly, weekly, daily) in our next major release (v2.0.0). We
provide a host of deterministic metrics, as well as some probabilistic metrics,
although the latter have not been tested rigorously. We support both perfect-model and
hindcast prediction ensembles, and provide
PerfectModelEnsemble and
HindcastEnsemble classes to make analysis easier.

See quick start and our examples to get started.




Installation

You can install the latest release of climpred using pip or conda:

pip install climpred





conda install -c conda-forge climpred





You can also install the bleeding edge (pre-release versions) by cloning this
repository and running pip install . --upgrade in the main directory
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Overview: Why climpred?

There are many packages out there related to computing metrics on initialized geoscience
predictions. However, we didn’t find any one package that unified all our needs.

Output from decadal climate prediction experiments is difficult to work with. A typical output
file could contain the dimensions initialization, lead time, ensemble member,
latitude, longitude, depth. climpred leverages the labeled dimensions of xarray
to handle the headache of bookkeeping for you. We offer
HindcastEnsemble and
PerfectModelEnsemble objects that carry references
(e.g., control runs, reconstructions, uninitialized ensembles) along with your decadal prediction
output.

When computing lead-dependent skill scores, climpred handles all of the lag-correlating for
you. We offer a suite of vectorized deterministic and probabilistic metrics that can be applied to
time series and grids. It’s as easy as adding your decadal prediction output to an object and
running compute: HindcastEnsemble.compute_metric(metric='rmse').





          

      

      

    

  

    
      
          
            
  


Scope of climpred

climpred aims to be the primary package used to analyze output from initialized dynamical
forecast models, ranging from short-term weather forecasts to decadal climate forecasts. The code
base will be driven entirely by the geoscientific prediction community through open source
development. It leverages xarray to keep track of core prediction ensemble dimensions
(e.g., ensemble member, initialization date, and lead time) and dask to perform out-of-memory
computations on large datasets.

The primary goal of climpred is to offer a comprehensive set of analysis tools for assessing the
forecasts relative to references (e.g., observations, reanalysis products, control runs, baseline
forecasts). This will range from simple deterministic and probabilistic verification metrics—such
as mean absolute error and various skill scores—to more advanced analysis methods, such as relative
entropy and mutual information. climpred expects users to handle their domain-specific
post-processing of model output, so that the package can focus on the actual analysis of forecasts.

Finally, the climpred documentation will serve as a repository of unified analysis methods
through jupyter notebook examples, and will also collect relevant references and literature.





          

      

      

    

  

    
      
          
            
  


Quick Start

The easiest way to get up and running is to load in one of our example datasets (or load in some data of your own) and to convert them to either a HindcastEnsemble or PerfectModelEnsemble object.

climpred provides example datasets from the MPI-ESM-LR decadal prediction ensemble and the CESM decadal prediction ensemble. See our examples to see some analysis cases.


[1]:






%matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
import climpred







You can view the datasets available to be loaded with the load_datasets() command without passing any arguments:


[2]:






climpred.tutorial.load_dataset()













'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs






From here, loading a dataset is easy. Note that you need to be connected to the internet for this to work – the datasets are being pulled from the climpred-data [https://github.com/bradyrx/climpred-data] repository. Once loaded, it is cached on your computer so you can reload extremely quickly. These datasets are very small (< 1MB each) so they won’t take up much space.


[3]:






hind = climpred.tutorial.load_dataset('CESM-DP-SST')
obs = climpred.tutorial.load_dataset('ERSST')







Make sure your prediction ensemble’s dimension labeling conforms to climpred’s standards. In other words, you need an init, lead, and (optional) member dimension. Make sure that your init and lead dimensions align. E.g., a November 1st, 1954 initialization should be labeled as init=1954 so that the lead=1 forecast is 1955.


[4]:






print(hind)













<xarray.Dataset>
Dimensions:  (init: 64, lead: 10, member: 10)
Coordinates:
  * lead     (lead) int32 1 2 3 4 5 6 7 8 9 10
  * member   (member) int32 1 2 3 4 5 6 7 8 9 10
  * init     (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0
Data variables:
    SST      (init, lead, member) float64 ...






We’ll quickly process the data to create anomalies. CESM-DPLE’s drift-correction occurs over 1964-2014, so we’ll remove that from the observations.


[5]:






# subtract climatology
obs = obs - obs.sel(time=slice(1964, 2014)).mean()







We can now create a HindcastEnsemble object and add our reference and name it 'Obs'.


[6]:






hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_reference(obs, 'Obs')
print(hindcast)













<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead, member) float64 ...
Obs:
    SST      (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:
    None






We’ll remove a linear trend so that it doesn’t artificially boost our predictability. Note that climpred objects (HindcastEnsemble and PerfectModelEnsemble) can have any arbitrary xarray function applied to them. Here, we use the xarray .apply() function to apply our climpred trend removal function.


[7]:






# Apply the `rm_trend` function twice to detrend our obs over time and
# detrend our initialized forecasts over init. The objects ignore an xarray
# operation if the dimension doesn't exist for the given dataset.
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='time')
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='init')
print(hindcast)













<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead, member) float64 0.005165 0.03014 ... 0.1842 0.1812
Obs:
    SST      (time) float32 -0.061960407 -0.023283795 ... 0.072058104 0.165859
Uninitialized:
    None






Now we’ll quickly calculate skill and persistence. We have a variety of possible metrics [https://climpred.readthedocs.io/en/latest/metrics.html] to use.


[8]:






init = hindcast.compute_metric(metric='acc')
persistence = hindcast.compute_persistence(metric='acc')
print(init)













<xarray.Dataset>
Dimensions:  (lead: 10)
Coordinates:
  * lead     (lead) int64 1 2 3 4 5 6 7 8 9 10
Data variables:
    SST      (lead) float64 0.6778 0.5476 0.4527 ... 0.1393 -0.03366 -0.1084
Attributes:
    prediction_skill:              calculated by climpred https://climpred.re...
    skill_calculated_by_function:  compute_hindcast
    number_of_initializations:     64
    number_of_members:             10
    metric:                        pearson_r
    comparison:                    e2r
    units:                         None
    created:                       2020-01-07 19:05:08







[9]:






plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
init.SST.plot(marker='o', markersize=10, label='skill')
persistence.SST.plot(marker='o', markersize=10, label='persistence',
                     color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Predictability',
       ylabel='Anomaly \n Correlation Coefficient',
       xlabel='Lead Year')
plt.show()












[image: _images/quick-start_16_0.png]




We can also check error in our forecasts.


[10]:






init = hindcast.compute_metric(metric='rmse')
persistence = hindcast.compute_persistence(metric='rmse')








[11]:






plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
init.SST.plot(marker='o', markersize=10, label='initialized forecast')
persistence.SST.plot(marker='o', markersize=10, label='persistence',
                     color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Forecast Error',
       ylabel='RMSE',
       xlabel='Lead Year')
plt.show()












[image: _images/quick-start_19_0.png]








          

      

      

    

  

    
      
          
            
  


Examples



	Demo of Perfect Model Predictability Functions

	Hindcast Predictions of Equatorial Pacific SSTs

	Diagnosing Potential Predictability

	Temporal and spatial smoothing









          

      

      

    

  

    
      
          
            
  


Demo of Perfect Model Predictability Functions

This demo demonstrates climpred’s capabilities for a perfect-model framework ensemble simulation.

What’s a perfect-model framework simulation?

A perfect-model framework uses a set of ensemble simulations that are based on a General Circulation Model (GCM) or Earth System Model (ESM) alone. There is no use of any reanalysis, reconstruction, or data product to initialize the decadal prediction ensemble. An arbitrary number of members are initialized from perturbed initial conditions (the “ensemble”), and the control simulation can be viewed as just another member.

How to compare predictability skill score: As no observational data interferes with the random climate evolution of the model, we cannot use an observation-based reference for computing skill scores. Therefore, we can compare the members with one another (m2m), against the ensemble mean (m2e), or against the control (m2c). We can also compare the ensemble mean to the control (e2c). See the comparisons page for more information.

When to use perfect-model frameworks:


	You don’t have a sufficiently long observational record to use as a reference.


	You want to avoid biases between model climatology and reanalysis climatology.


	You want to avoid sensitive reactions of biogeochemical cycles to disruptive changes in ocean physics due to assimilation.


	You want to delve into process understanding of predictability in a model without outside artifacts.





[1]:






import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

import climpred








[2]:






warnings.filterwarnings("ignore")







Load sample data

Here we use a subset of ensembles and members from the MPI-ESM-LR (CMIP6 version) esmControl simulation of an early state. This corresponds to vga0214 from year 3000 to 3300.


1-dimensional output

Our 1D sample output contains datasets of time series of certain spatially averaged area (‘global’, ‘North_Atlantic’) and temporally averaged period (‘ym’, ‘DJF’, …) for some lead years (1, …, 20).

ds: The ensemble dataset of all members (1, …, 10), inits (initialization years: 3014, 3023, …, 3257), areas, periods, and lead years.

control: The control dataset with the same areas and periods, as well as the years 3000 to 3299.


[3]:






ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D')
control = climpred.tutorial.load_dataset('MPI-control-1D')








[4]:






# Add to climpred PerfectModelEnsemble object.
pm = climpred.PerfectModelEnsemble(ds)
pm = pm.add_control(control)
print(pm)













<climpred.PerfectModelEnsemble>
Initialized Ensemble:
    tos      (period, lead, area, init, member) float32 ...
    sos      (period, lead, area, init, member) float32 ...
    AMO      (period, lead, area, init, member) float32 ...
Control:
    tos      (period, time, area) float32 ...
    sos      (period, time, area) float32 ...
    AMO      (period, time, area) float32 ...
Uninitialized:
    None






We’ll sub-select annual means (‘ym’) of sea surface temperature (‘tos’) in the North Atlantic.


[5]:






# Currently cannot sub-select variables. Easiest way is to just use drop, or if there's lots
# of variables, select them before creating the object.
pm = pm.sel(area='North_Atlantic', period='ym').drop(['sos', 'AMO']).reset_coords(drop=True)








Bootstrapping with Replacement

Here, we bootstrap the ensemble with replacement [Goddard et al. 2013] to compare the initialized ensemble to an “uninitialized” counterpart and a persistence forecast. The visualization is based on those used in [Li et al. 2016]. The p value demonstrates the probability that the uninitialized or persistence beats the initialized forecast based on N=100 bootstrapping with replacement.


[6]:






for metric in ['acc', 'rmse']:
    bootstrapped = pm.bootstrap(metric=metric, comparison='m2e', bootstrap=100, sig=95)
    # Hacky fix that needs to be dealt with in a PR.
    # climpred objects return a dataset. graphics module wants a DataArray but looks
    # for the attributes that are attached to the Dataset.
    bs = bootstrapped['tos']
    bs.attrs = bootstrapped.attrs
    climpred.graphics.plot_bootstrapped_skill_over_leadyear(bs, sig=95)
    plt.title(' '.join(['SST', 'North Atlantic', 'Annual:', metric]),fontsize=18)
    plt.ylabel(metric)
    plt.show()













bootstrapping iteration: 100%|██████████| 100/100 [00:39<00:00,  2.55it/s]











[image: ../_images/examples_perfect-model-predictability-demo_10_1.png]










bootstrapping iteration: 100%|██████████| 100/100 [00:37<00:00,  2.69it/s]











[image: ../_images/examples_perfect-model-predictability-demo_10_3.png]







Computing Skill with Different Comparison Methods

Here, we use compute_perfect_model to compute the Anomaly Correlation Coefficient (ACC) with different comparison methods. This generates different ACC values by design. See the comparisons page for a description of the various ways to compute skill scores for a perfect-model framework.


[7]:






for c in ['e2c','m2c','m2e','m2m']:
    pm.compute_metric(metric='acc', comparison=c)['tos'].plot(label=c)
# Persistence computation for a baseline.
pm.compute_persistence(metric='acc')['tos'].plot(label='persistence', ls=':')
plt.ylabel('ACC')
plt.xticks(np.arange(1,21))
plt.legend()
plt.title('Different forecast-reference comparisons for pearson_r \n lead to systematically different magnitude of skill score')
plt.show()












[image: ../_images/examples_perfect-model-predictability-demo_12_0.png]









3-dimensional output (maps)

We also have some sample output that contains gridded time series on the curvilinear MPI grid. Our compute functions (compute_perfect_model, compute_persistence) are indifferent to any dimensions that exist in addition to init, member, and lead. In other words, the functions are set up to make these computations on a grid, if one includes lat, lon, lev, depth, etc.

ds3d: The ensemble dataset of members (1, 2, 3, 4), inits (initialization years: 3014, 3061, 3175, 3237), and lead years (1, 2, 3, 4, 5).

control3d: The control dataset spanning (3000, …, 3049).

Note: These are very small subsets of the actual MPI simulations so that we could host the sample output maps on Github.


[8]:






# Sea surface temperature
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D') \
                        .sel(init=3014) \
                        .expand_dims('init')['tos']
control3d = climpred.tutorial.load_dataset('MPI-control-3D')['tos']








[9]:






# Create climpred PerfectModelEnsemble object.
pm = climpred.PerfectModelEnsemble(ds3d)
pm = pm.add_control(control3d)
print(pm)













<climpred.PerfectModelEnsemble>
Initialized Ensemble:
    tos      (init, lead, member, y, x) float32 nan nan nan nan ... nan nan nan
Control:
    tos      (time, y, x) float32 ...
Uninitialized:
    None







Maps of Skill by Lead Year


[10]:






pm.compute_metric(metric='rmse', comparison='m2e')['tos'].T.plot(col='lead', robust=True, yincrease=False)








[10]:







<xarray.plot.facetgrid.FacetGrid at 0x11abb3cf8>











[image: ../_images/examples_perfect-model-predictability-demo_18_1.png]
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Hindcast Predictions of Equatorial Pacific SSTs

In this example, we evaluate hindcasts (retrospective forecasts) of sea surface temperatures in the eastern equatorial Pacific from CESM-DPLE. These hindcasts are evaluated against a forced ocean–sea ice simulation that initializes the model.

See the quick start for an analysis of time series (rather than maps) from a hindcast prediction ensemble.


[1]:






import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import climpred
from climpred import HindcastEnsemble








[2]:






warnings.filterwarnings("ignore")







We’ll load in a small region of the eastern equatorial Pacific for this analysis example.


[3]:






climpred.tutorial.load_dataset()













'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs







[4]:






hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D')['SST']
recon = climpred.tutorial.load_dataset('FOSI-SST-3D')['SST']
print(hind)













<xarray.DataArray 'SST' (init: 64, lead: 10, nlat: 37, nlon: 26)>
[615680 values with dtype=float32]
Coordinates:
    TLAT     (nlat, nlon) float64 ...
    TLONG    (nlat, nlon) float64 ...
  * init     (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0
  * lead     (lead) int32 1 2 3 4 5 6 7 8 9 10
    TAREA    (nlat, nlon) float64 ...
Dimensions without coordinates: nlat, nlon






These two example products cover a small portion of the eastern equatorial Pacific.


[5]:






ax = plt.axes(projection=ccrs.Orthographic(-80, 0))
p = ax.pcolormesh(recon.TLONG, recon.TLAT, recon.mean('time'),
              transform=ccrs.PlateCarree(), cmap='twilight')
ax.add_feature(cfeature.LAND, color='#d3d3d3')
ax.set_global()
plt.colorbar(p, label='Sea Surface Temperature [degC]')
ax.set(title='Example Data Coverage')








[5]:







[Text(0.5, 1.0, 'Example Data Coverage')]











[image: ../_images/examples_tropical-pacific-ssts_7_1.png]




We first need to remove the same climatology that was used to drift-correct the CESM-DPLE. Then we’ll create a detrended version of our two products to assess detrended predictability.


[6]:






# Remove 1964-2014 climatology.
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')







Although functions can be called directly in climpred, we suggest that you use our classes (HindcastEnsemble and PerfectModelEnsemble) to make analysis code cleaner.


[7]:






hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_reference(recon, 'Reconstruction')
print(hindcast)













<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead, nlat, nlon) float32 ...
Reconstruction:
    SST      (time, nlat, nlon) float32 0.0029411316 0.0013866425 ... 1.4646168
Uninitialized:
    None






I’ll also detrend the reconstruction over its time dimension and initialized forecast ensemble over init.


[8]:






# Apply the `rm_trend` function twice to detrend our obs over time and
# detrend our initialized forecasts over init. The objects ignore an xarray
# operation if the dimension doesn't exist for the given dataset.
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='init')
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='time')








Anomaly Correlation Coefficient of SSTs

We can now compute the ACC over all leads and all grid cells.


[9]:






predictability = hindcast.compute_metric(metric='acc')
print(predictability)













<xarray.Dataset>
Dimensions:  (lead: 10, nlat: 37, nlon: 26)
Coordinates:
    TLONG    (lead, nlat, nlon) float64 250.8 251.9 253.1 ... 276.7 277.8 278.9
    TAREA    (lead, nlat, nlon) float64 3.661e+13 3.661e+13 ... 3.714e+13
  * nlat     (nlat) int64 0 1 2 3 4 5 6 7 8 9 ... 27 28 29 30 31 32 33 34 35 36
  * nlon     (nlon) int64 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 24 25
  * lead     (lead) int64 1 2 3 4 5 6 7 8 9 10
    TLAT     (lead, nlat, nlon) float64 -9.75 -9.75 -9.75 ... -0.1336 -0.1336
Data variables:
    SST      (lead, nlat, nlon) float32 0.54588705 0.53977644 ... 0.088374
Attributes:
    prediction_skill:              calculated by climpred https://climpred.re...
    skill_calculated_by_function:  compute_hindcast
    number_of_initializations:     64
    metric:                        pearson_r
    comparison:                    e2r
    units:                         None
    created:                       2019-11-21 15:52:28






We use the pval keyword to get associated p values for our ACCs. We can then mask our final maps based on [image: \alpha = 0.05].


[10]:






significance = hindcast.compute_metric(metric='p_pval')

# Mask latitude and longitude by significance for stippling.
siglat = significance.TLAT.where(significance.SST <= 0.05)
siglon = significance.TLONG.where(significance.SST <= 0.05)








[11]:






p = predictability.SST.plot.pcolormesh(x='TLONG', y='TLAT',
                                       transform=ccrs.PlateCarree(),
                                       col='lead', col_wrap=5,
                                       subplot_kws={'projection': ccrs.PlateCarree(),
                                                    'aspect': 3},
                                       cbar_kwargs={'label': 'Anomaly Correlation Coefficient'},
                                       vmin=-0.7, vmax=0.7,
                                       cmap='RdYlBu_r')
for i, ax in enumerate(p.axes.flat):
    ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
    ax.gridlines(alpha=0.3, color='k', linestyle=':')
    # Add significance stippling
    ax.scatter(siglon.isel(lead=i),
               siglat.isel(lead=i),
               color='k',
               marker='.',
               s=1.5,
               transform=ccrs.PlateCarree())












[image: ../_images/examples_tropical-pacific-ssts_18_0.png]







Root Mean Square Error of SSTs

We can also check error in our forecasts, just by changing the metric keyword.


[12]:






rmse = hindcast.compute_metric(metric='rmse')








[13]:






p = rmse.SST.plot.pcolormesh(x='TLONG', y='TLAT',
                            transform=ccrs.PlateCarree(),
                            col='lead', col_wrap=5,
                            subplot_kws={'projection': ccrs.PlateCarree(),
                                        'aspect': 3},
                            cbar_kwargs={'label': 'Root Mean Square Error (degC)'},
                            cmap='Purples')
for ax in p.axes.flat:
    ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
    ax.gridlines(alpha=0.3, color='k', linestyle=':')












[image: ../_images/examples_tropical-pacific-ssts_21_0.png]
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Diagnosing Potential Predictability

This demo demonstrates climpred’s capabilities to diagnose areas containing potentially predictable variations from a control or reference alone without requiring multi-member, multi-initialization simulations. This notebook identifies the slow components of internal variability that indicate potential predictability. Here, we showcase a set of methods to show regions indicating probabilities for decadal predictability.


[1]:






import warnings
%matplotlib inline
import climpred
warnings.filterwarnings("ignore")








[2]:






# Sea surface temperature
varname='tos'
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname].load()








Diagnostic Potential Predictability (DPP)

We can first use the [Resplandy 2015] and [Seferian 2018] method for computing the unbiased DPP by not chunking the time dimension.


[3]:






# calculate DPP with m=10
DPP10 = climpred.stats.dpp(control3d, m=10, chunk=False)
# calculate a threshold by random shuffling (based on bootstrapping with replacement at 95% significance level)
threshold = climpred.bootstrap.dpp_threshold(control3d,
                                             m=10,
                                             chunk=False,
                                             bootstrap=10,
                                             sig=95)
# plot grid cells where DPP above threshold
DPP10.where(DPP10 > threshold).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap='viridis')








[3]:







<matplotlib.collections.QuadMesh at 0x7fa3315bb908>











[image: ../_images/examples_diagnose-potential-predictability_4_1.png]




Now, we can turn on chunking (the default for this function) to use the [Boer 2004] method.


[4]:






# chunk = True signals the Boer 2004 method
DPP10 = climpred.stats.dpp(control3d, m=10, chunk=True)
threshold = climpred.bootstrap.dpp_threshold(control3d,
                                             m=10,
                                             chunk=True,
                                             bootstrap=50,
                                             sig=95)
DPP10.where(DPP10>0).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap='viridis')








[4]:







<matplotlib.collections.QuadMesh at 0x7fa331c7e0b8>











[image: ../_images/examples_diagnose-potential-predictability_6_1.png]







Variance-Weighted Mean Period

A periodogram is computed based on a control simulation to extract the mean period of variations, which are weighted by the respective variance. Regions with a high mean period value indicate low-frequency variations with are potentially predictable [Branstator 2010].


[5]:






vwmp = climpred.stats.varweighted_mean_period(control3d, dim='time')
threshold = climpred.bootstrap.varweighted_mean_period_threshold(control3d,
                                                             bootstrap=10)
vwmp.where(vwmp > threshold).plot(yincrease=False, robust=True)








[5]:







<matplotlib.collections.QuadMesh at 0x7fa3131b7240>











[image: ../_images/examples_diagnose-potential-predictability_8_1.png]







Lag-1 Autocorrelation

The lag-1 autocorrelation also indicates where slower modes of variability occur by identifying regions with high temporal correlation [vonStorch 1999].


[6]:






# use climpred.bootstrap._bootstrap_func to wrap any stats function
threshold = climpred.bootstrap._bootstrap_func(climpred.stats.autocorr,control3d,'time',bootstrap=100)
corr_ef = climpred.stats.autocorr(control3d, dim='time')
corr_ef.where(corr_ef>threshold).plot(yincrease=False, robust=False)








[6]:







<matplotlib.collections.QuadMesh at 0x7fa3213b8cc0>











[image: ../_images/examples_diagnose-potential-predictability_10_1.png]







Decorrelation time

Taking the lagged correlation further over all lags, the decorrelation time shows the time after which the autocorrelation fell beyond its e-folding [vonStorch 1999]


[7]:






threshold = climpred.bootstrap._bootstrap_func(climpred.stats.decorrelation_time,control3d,'time',bootstrap=100)
decorr_time = climpred.stats.decorrelation_time(control3d)
decorr_time.where(decorr_time>threshold).plot(yincrease=False, robust=False)








[7]:







<matplotlib.collections.QuadMesh at 0x7fa3312afa58>











[image: ../_images/examples_diagnose-potential-predictability_12_1.png]







Verify diagnostic potential predictability in predictability simulations

Do we find predictability in the areas highlighted above also in perfect-model experiments?


[8]:






ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D')[varname].load()








[9]:






bootstrap_skill = climpred.bootstrap.bootstrap_perfect_model(ds3d,
                                          control3d,
                                          metric='rmse',
                                          comparison='m2e',
                                          bootstrap=20)































[10]:






init_skill = bootstrap_skill.sel(results='skill',kind='init')
# p value: probability that random uninitialized forecasts perform better than initialized
p = bootstrap_skill.sel(results='p',kind='uninit')








[11]:






init_skill.where(p<=.05).plot(col='lead', robust=True, yincrease=False)








[11]:







<xarray.plot.facetgrid.FacetGrid at 0x7fa311a2c898>











[image: ../_images/examples_diagnose-potential-predictability_17_1.png]




The metric rmse is negatively oriented, e.g. higher values show large disprepancy between members and hence less skill.

As suggested by DPP, the variance-weighted mean period and autocorrelation, also in slight perturbed initial values ensembles there is predictability in the North Atlantic, North Pacific and Southern Ocean in sea-surface temperatures.
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Temporal and spatial smoothing

This demo demonstrates climpred’s capabilities to postprocess decadal prediction output before skill verification. Here, we showcase a set of methods to smooth out noise in the spatial and temporal domain.


[1]:






import warnings
%matplotlib inline
import climpred
warnings.filterwarnings("ignore")








[2]:






# Sea surface temperature
varname='tos'
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D')[varname]
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname]








Temporal smoothing

In order to reduce temporal noise, decadal predictions are recommended to take multi-year averages [Goddard2013].


[3]:






ds3d_ts = climpred.smoothing.temporal_smoothing(ds3d,smooth_kws={'lead':4})
control3d_ts = climpred.smoothing.temporal_smoothing(control3d, smooth_kws={'time':4})








[4]:






climpred.prediction.compute_perfect_model(ds3d_ts,
                                          control3d_ts,
                                          metric='rmse',
                                          comparison='m2e') \
                   .plot(col='lead', robust=True, yincrease=False)








[4]:







<xarray.plot.facetgrid.FacetGrid at 0x1088d1518>











[image: ../_images/examples_smoothing_5_1.png]




Compare to without smoothing:


[5]:






climpred.prediction.compute_perfect_model(ds3d,
                                          control3d,
                                          metric='rmse',
                                          comparison='m2e') \
                   .plot(col='lead', vmax=.69, yincrease=False)








[5]:







<xarray.plot.facetgrid.FacetGrid at 0x1249b5278>











[image: ../_images/examples_smoothing_7_1.png]




Note: When using temporal_smoothing on compute_hindcast, set rename_dim=False and after calculating the skill _reset_temporal_axis to get proper labeling of the lead dimension.


[6]:






hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D').load()['SST']
reconstruction = climpred.tutorial.load_dataset('FOSI-SST-3D').load()['SST']
# get anomaly reconstruction
reconstruction = reconstruction - reconstruction.mean('time')








[7]:






hind_ts = climpred.smoothing.temporal_smoothing(hind,smooth_kws={'lead':4},rename_dim=False)
reconstruction_ts = climpred.smoothing.temporal_smoothing(reconstruction, smooth_kws={'time':4},rename_dim=False)








[8]:






s = climpred.prediction.compute_hindcast(hind_ts,
                                          reconstruction_ts,
                                          metric='rmse',
                                          comparison='e2r')
s = climpred.smoothing._reset_temporal_axis(s,smooth_kws={'lead':4})
s.plot(col='lead', robust=True)








[8]:







<xarray.plot.facetgrid.FacetGrid at 0x1206d6ef0>











[image: ../_images/examples_smoothing_11_1.png]







Spatial smoothing

In order to reduce spatial noise, global decadal predictions are recommended to get regridded to a 5 degree longitude x 5 degree latitude grid as recommended [Goddard2013].


[9]:






ds3d_ss = climpred.smoothing.spatial_smoothing_xesmf(ds3d,d_lon_lat_kws={'lon':5, 'lat':5})
control3d_ss = climpred.smoothing.spatial_smoothing_xesmf(control3d, d_lon_lat_kws={'lon':5,'lat':5})













Create weight file: bilinear_220x256_36x73.nc
Reuse existing file: bilinear_220x256_36x73.nc







[10]:






climpred.prediction.compute_perfect_model(ds3d_ss,
                                          control3d_ss,
                                          metric='rmse',
                                          comparison='m2e') \
                   .plot(col='lead', robust=True, yincrease=True)








[10]:







<xarray.plot.facetgrid.FacetGrid at 0x1220bf588>











[image: ../_images/examples_smoothing_14_1.png]




Alternatively, also climpred.smoothing.spatial_smoothing_xrcoarsen aggregates gridcells like xr_coarsen.

smooth_goddard2013 creates 4-year means and 5x5 degree regridding as suggested in [Goddard2013].


[11]:






climpred.smoothing.smooth_goddard_2013(ds3d).coords













Reuse existing file: bilinear_220x256_36x73.nc







[11]:







Coordinates:
  * lead     (lead) <U3 '1-4' '2-5'
  * init     (init) int64 3014 3061 3175 3237
  * member   (member) int64 1 2 3 4
  * lon      (lon) float64 -180.0 -175.0 -170.0 -165.0 ... 170.0 175.0 180.0
  * lat      (lat) float64 -83.97 -78.97 -73.97 -68.97 ... 81.03 86.03 91.03
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Setting Up Your Dataset

climpred relies on a consistent naming system for xarray dimensions. This allows things to
run more easily under-the-hood.

Prediction ensembles are expected at the minimum to contain dimensions init and lead.
init is the initialization dimension, that relays the time steps at which the ensemble was
initialized. lead is the lead time of the forecasts from initialization. Another crucial
dimension is member, which holds the various ensemble members. Any additional dimensions will
be passed through climpred without issue: these could be things like lat, lon,
depth, etc.

Control runs, references, and observational products are expected to contain the time
dimension at the minimum. For best use of climpred, their time dimension should cover the
full length of init from the accompanying prediction ensemble, if possible. These products can
also include additional dimensions, such as lat, lon, depth, etc.

See the below table for a summary of dimensions used in climpred, and data types that
climpred supports for them.








	short_name

	types

	long_name



	lead

	int

	lead timestep after initialization [init]



	init

	int

	initialization: start date of experiment



	member

	int, str

	ensemble member










          

      

      

    

  

    
      
          
            
  


PredictionEnsemble Objects

One of the major features of climpred is our objects that are based upon the PredictionEnsemble class. We supply users with a HindcastEnsemble and PerfectModelEnsemble object. We encourage users to take advantage of these high-level objects, which wrap all of our core functions. These objects don’t comprehensively cover all functions yet, but eventually we’ll deprecate direct access to the function calls in favor of the lightweight objects.

Briefly, we consider a HindcastEnsemble to be one that is initialized from some observational-like product (e.g., assimilated data, reanalysis products, or a model reconstruction). Thus, this object is built around comparing the initialized ensemble to various observational products. In contrast, a PerfectModelEnsemble is one that is initialized off of a model control simulation. These forecasting systems are not meant to be compared directly to real-world observations. Instead, they
provide a contained model environment with which to theoretically study the limits of predictability. You can read more about the terminology used in climpred here.

Let’s create a demo object to explore some of the functionality and why they are much smoother to use than direct function calls.


[1]:






%matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
import climpred







We can pull in some sample data that is packaged with climpred.


[2]:






climpred.tutorial.load_dataset()













'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs







HindcastEnsemble

We’ll start out with a HindcastEnsemble demo, followed by a PerfectModelEnsemble case.


[3]:






hind = climpred.tutorial.load_dataset('CESM-DP-SST') # CESM-DPLE hindcast ensemble output.
obs = climpred.tutorial.load_dataset('ERSST') # ERSST observations.
recon = climpred.tutorial.load_dataset('FOSI-SST') # Reconstruction simulation that initialized CESM-DPLE.







CESM-DPLE was drift-corrected prior to uploading the output, so we just need to subtract the climatology over the same period for our other products before building the object.


[4]:






obs = obs - obs.sel(time=slice(1964, 2014)).mean('time')
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')







Now we instantiate the HindcastEnsemble object and append all of our products to it.


[5]:






hindcast = HindcastEnsemble(hind) # Instantiate object by passing in our initialized ensemble.
print(hindcast)













<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead, member) float64 ...
References:
    None
Uninitialized:
    None






Now we just use the add_ methods to attach other objects. See the API here. Note that we strive to make our conventions follow those of ``xarray``’s. For example, we don’t allow inplace operations. One has to run hindcast = hindcast.add_reference(...) to modify the object upon later calls rather than just hindcast.add_reference(...).


[6]:






hindcast = hindcast.add_reference(recon, 'reconstruction')
hindcast = hindcast.add_reference(obs, 'ERSST')








[7]:






print(hindcast)













<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead, member) float64 ...
reconstruction:
    SST      (time) float64 -0.05064 -0.0868 -0.1396 ... 0.3023 0.3718 0.292
ERSST:
    SST      (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:
    None






You can apply most standard xarray functions directly to our objects! climpred will loop through the objects and apply the function to all applicable xarray.Datasets within the object. If you reference a dimension that doesn’t exist for the given xarray.Dataset, it will ignore it. This is useful, since the initialized ensemble is expected to have dimension init, while other products have dimension time (see more here).

Let’s start by taking the ensemble mean of the initialized ensemble so our metric computations don’t have to take the extra time on that later. I’m just going to use deterministic metrics here, so we don’t need the individual ensemble members. Note that above our initialized ensemble had a member dimension, and now it is reduced.


[8]:






hindcast = hindcast.mean('member')
print(hindcast)













<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead) float64 -0.2121 -0.1637 -0.1206 ... 0.7286 0.7532
reconstruction:
    SST      (time) float64 -0.05064 -0.0868 -0.1396 ... 0.3023 0.3718 0.292
ERSST:
    SST      (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:
    None






We still have a trend in all of our products, so we could also detrend them as well.


[9]:






hindcast.get_reference('reconstruction').SST.plot()








[9]:







[<matplotlib.lines.Line2D at 0x128348dd8>]











[image: _images/prediction-ensemble-object_16_1.png]





[10]:






from scipy.signal import detrend







I’m going to transpose this first since my initialized ensemble has dimensions ordered (init, lead) and scipy.signal.detrend is applied over the last axis. I’d like to detrend over the init dimension rather than lead dimension.


[11]:






hindcast = hindcast.transpose().apply(detrend)







And it looks like everything got detrended by a linear fit! That wasn’t too hard.


[12]:






hindcast.get_reference('reconstruction').SST.plot()








[12]:







[<matplotlib.lines.Line2D at 0x128422588>]











[image: _images/prediction-ensemble-object_21_1.png]





[13]:






hindcast.get_initialized().isel(lead=0).SST.plot()








[13]:







[<matplotlib.lines.Line2D at 0x10e971470>]











[image: _images/prediction-ensemble-object_22_1.png]




Now that we’ve done our pre-processing, let’s quickly compute some metrics. Check the metrics page here for all the keywords you can use. The API is currently pretty simple for the HindcastEnsemble. You can essentially compute standard skill metrics and a reference persistence forecast.

If you just pass a metric, it’ll compute the skill metric against all references and return a dictionary with keys of the names the user entered when adding them.


[14]:






hindcast.compute_metric(metric='mse')








[14]:







{'reconstruction': <xarray.Dataset>
 Dimensions:  (lead: 10)
 Coordinates:
   * lead     (lead) int32 1 2 3 4 5 6 7 8 9 10
 Data variables:
     SST      (lead) float64 0.005091 0.009096 0.008964 ... 0.01103 0.01261
 Attributes:
     prediction_skill:              calculated by climpred https://climpred.re...
     skill_calculated_by_function:  compute_hindcast
     number_of_initializations:     64
     metric:                        mse
     comparison:                    e2r
     created:                       2019-12-29 12:39:46,
 'ERSST': <xarray.Dataset>
 Dimensions:  (lead: 10)
 Coordinates:
   * lead     (lead) int32 1 2 3 4 5 6 7 8 9 10
 Data variables:
     SST      (lead) float64 0.003606 0.005651 0.006373 ... 0.007823 0.009009
 Attributes:
     prediction_skill:              calculated by climpred https://climpred.re...
     skill_calculated_by_function:  compute_hindcast
     number_of_initializations:     64
     metric:                        mse
     comparison:                    e2r
     created:                       2019-12-29 12:39:46}






One can also directly call individual references to compare to. Here we leverage xarray’s plotting method to compute Mean Absolute Error and the Anomaly Correlation Coefficient for both our reference products, as well as the equivalent metrics computed for persistence forecasts for each of those metrics.


[15]:






import numpy as np

plt.style.use('ggplot')
plt.style.use('seaborn-talk')

RECON_COLOR = '#1b9e77'
OBS_COLOR = '#7570b3'

f, axs = plt.subplots(nrows=2, figsize=(8, 8), sharex=True)

for ax, metric in zip(axs.ravel(), ['mae', 'acc']):
    handles = []
    for product, color in zip(['reconstruction', 'ERSST'], [RECON_COLOR, OBS_COLOR]):
        p1, = hindcast.compute_metric(product, metric=metric).SST.plot(ax=ax,
                                                                 marker='o',
                                                                 color=color,
                                                                 label=product,
                                                                 linewidth=2)
        p2, = hindcast.compute_persistence(product, metric=metric).SST.plot(ax=ax,
                                                                      color=color,
                                                                      linestyle='--',
                                                                      label=product + ' persistence')
        handles.append(p1)
        handles.append(p2)
    ax.set_title(metric.upper())


axs[0].set_ylabel('Mean Error [degC]')
axs[1].set_ylabel('Correlation Coefficient')
axs[0].set_xlabel('')
axs[1].set_xlabel('Lead Year')
axs[1].set_xticks(np.arange(10)+1)

# matplotlib/xarray returning weirdness for the legend handles.
handles = [i.get_label() for i in handles]

# a little trick to put the legend on the outside.
plt.legend(handles, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)

plt.suptitle('CESM Decadal Prediction Large Ensemble Global SSTs', fontsize=16)
plt.show()












[image: _images/prediction-ensemble-object_26_0.png]







PerfectModelEnsemble

We’ll now play around a bit with the PerfectModelEnsemble object, using sample data from the MPI perfect model configuration.


[16]:






from climpred import PerfectModelEnsemble








[17]:






ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D') # initialized ensemble from MPI
control = climpred.tutorial.load_dataset('MPI-control-1D') # base control run that initialized it








[18]:






print(ds)













<xarray.Dataset>
Dimensions:  (area: 3, init: 12, lead: 20, member: 10, period: 5)
Coordinates:
  * lead     (lead) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
  * period   (period) object 'DJF' 'JJA' 'MAM' 'SON' 'ym'
  * area     (area) object 'global' 'North_Atlantic' 'North_Atlantic_SPG'
  * init     (init) int64 3014 3023 3045 3061 3124 ... 3175 3178 3228 3237 3257
  * member   (member) int64 0 1 2 3 4 5 6 7 8 9
Data variables:
    tos      (period, lead, area, init, member) float32 ...
    sos      (period, lead, area, init, member) float32 ...
    AMO      (period, lead, area, init, member) float32 ...







[19]:






pm = climpred.PerfectModelEnsemble(ds)
pm = pm.add_control(control)
print(pm)













<climpred.PerfectModelEnsemble>
Initialized Ensemble:
    tos      (period, lead, area, init, member) float32 ...
    sos      (period, lead, area, init, member) float32 ...
    AMO      (period, lead, area, init, member) float32 ...
Control:
    tos      (period, time, area) float32 ...
    sos      (period, time, area) float32 ...
    AMO      (period, time, area) float32 ...
Uninitialized:
    None






Our objects are carrying sea surface temperature (tos), sea surface salinity (sos), and the Atlantic Multidecadal Oscillation index (AMO). Say we just want to look at skill metrics for temperature and salinity over the North Atlantic in JJA. We can just call a few easy xarray commands to filter down our object.


[20]:






pm = pm.drop('AMO').sel(area='North_Atlantic', period='JJA')







Now we can easily compute for a host of metrics. Here I just show a number of deterministic skill metrics comparing all individual members to the initialized ensemble mean. See comparisons for more information on the comparison keyword.


[22]:






METRICS = ['mse', 'rmse', 'mae', 'acc',
           'nmse', 'nrmse', 'nmae', 'msss']

result = []
for metric in METRICS:
    result.append(pm.compute_metric(metric, comparison='m2e'))

result = xr.concat(result, 'metric')
result['metric'] = METRICS

# Leverage the `xarray` plotting wrapper to plot all results at once.
result.to_array().plot(col='metric',
                       hue='variable',
                       col_wrap=4,
                       sharey=False,
                       sharex=True)








[22]:







<xarray.plot.facetgrid.FacetGrid at 0x1237162b0>











[image: _images/prediction-ensemble-object_35_1.png]




It is useful to compare the initialized ensemble to an uninitialized run. See terminology for a description on “uninitialized” simulations. This gives us information about how initializations lead to enhanced predictability over knowledge of external forcing, whereas a comparison to persistence just tells us how well a dynamical forecast simulation does in comparison to a naive method. We can use the generate_uninitialized() method to bootstrap the control run and
create a pseudo-ensemble that approximates what an uninitialized ensemble would look like.


[23]:






pm = pm.generate_uninitialized()
print(pm)













<climpred.PerfectModelEnsemble>
Initialized Ensemble:
    tos      (lead, init, member) float32 ...
    sos      (lead, init, member) float32 ...
Control:
    tos      (time) float32 ...
    sos      (time) float32 ...
Uninitialized:
    tos      (init, member, lead) float32 12.829465 13.21901 ... 13.952087
    sos      (init, member, lead) float32 33.180943 33.192753 ... 33.15761







[24]:






pm = pm.drop('tos') # Just assess for salinity.







Here I plot the ACC for the initialized, uninitialized, and persistence forecasts for North Atlantic sea surface salinity in JJA. I add circles to the lines if the correlations are statistically significant for [image: p <= 0.05].


[25]:






# ACC for initialized ensemble
acc = pm.compute_metric('acc')
acc.sos.plot(color='red')
acc.where(pm.compute_metric('p_pval') <= 0.05).sos.plot(marker='o', linestyle='None', color='red', label='initialized')

# ACC for 'uninitialized' ensemble
acc = pm.compute_uninitialized('acc')
acc.sos.plot(color='gray')
acc.where(pm.compute_uninitialized('p_pval') <= 0.05).sos.plot(marker='o', linestyle='None', color='gray', label='uninitialized')

# ACC for persistence forecast
acc = pm.compute_persistence('acc')
acc.sos.plot(color='k', linestyle='--')
acc.where(pm.compute_persistence('p_pval') <= 0.05).sos.plot(marker='o', linestyle='None', color='k', label='persistence')

plt.legend()








[25]:







<matplotlib.legend.Legend at 0x12d14dcf8>
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Metrics

All high-level functions have an optional metric argument that can be called to
determine which metric is used in computing predictability.


Note

We use the phrase ‘observations’ o here to refer to the ‘truth’ data to which
we compare the forecast f. These metrics can also be applied in reference
to a control simulation, reconstruction, observations, etc. This would just
change the resulting score from referencing skill to referencing potential
predictability.



Internally, all metric functions require forecast and reference as inputs.
The dimension dim is set internally by
compute_hindcast() or
compute_perfect_model() to specify over which dimensions
the metric is applied. See Comparisons for more on the dim argument.


Deterministic

Deterministic metrics assess the forecast as a definite prediction of the future, rather
than in terms of probabilities. Another way to look at deterministic metrics is that
they are a special case of probabilistic metrics where a value of one is assigned to
one category and zero to all others [Jolliffe2011].


Correlation Metrics

The below metrics rely fundamentally on correlations in their computation. In the
literature, correlation metrics are typically referred to as the Anomaly Correlation
Coefficient (ACC). This implies that anomalies in the forecast and observations
are being correlated. Typically, this is computed using the linear
Pearson Product-Moment Correlation.
However, climpred also offers the
Spearman’s Rank Correlation.

Note that the p value associated with these correlations is computed via a separate
metric. Use pearson_r_p_value or spearman_r_p_value to compute p values assuming
that all samples in the correlated time series are independent. Use
pearson_r_eff_p_value or spearman_r_eff_p_value to account for autocorrelation
in the time series by calculating the effective_sample_size.


Pearson Product-Moment Correlation Coefficient

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [1]: print(f"\n\nKeywords: {metric_aliases['pearson_r']}")


Keywords: ['pearson_r', 'pr', 'acc', 'pacc']






	
climpred.metrics._pearson_r(forecast, reference, dim=None, **metric_kwargs)

	Pearson product-moment correlation coefficient.

A measure of the linear association between the forecast and observations that
is independent of the mean and variance of the individual distributions. This is
also known as the Anomaly Correlation Coefficient (ACC) when correlating anomalies.


[image: corr = \frac{cov(f, o)}{\sigma_{f}\cdot\sigma_{o}},]


where [image: \sigma_{f}] and [image: \sigma_{o}] represent the standard deviation
of the forecast and observations over the experimental period, respectively.


Note

Use metric pearson_r_p_value or pearson_r_eff_p_value to get the
corresponding p value.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	-1.0



	maximum

	1.0



	perfect

	1.0



	orientation

	positive











See also


	xskillscore.pearson_r


	xskillscore.pearson_r_p_value


	climpred.pearson_r_p_value


	climpred.pearson_r_eff_p_value













Pearson Correlation p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [2]: print(f"\n\nKeywords: {metric_aliases['pearson_r_p_value']}")


Keywords: ['pearson_r_p_value', 'p_pval', 'pvalue', 'pval']






	
climpred.metrics._pearson_r_p_value(forecast, reference, dim=None, **metric_kwargs)

	Probability that forecast and reference are linearly uncorrelated.

Two-tailed p value associated with the Pearson product-moment correlation
coefficient (pearson_r), assuming that all samples are independent. Use
pearson_r_eff_p_value to account for autocorrelation in the forecast
and observations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	1.0



	orientation

	negative











See also


	xskillscore.pearson_r


	xskillscore.pearson_r_p_value


	climpred.pearson_r


	climpred.pearson_r_eff_p_value













Effective Sample Size

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [3]: print(f"\n\nKeywords: {metric_aliases['effective_sample_size']}")


Keywords: ['effective_sample_size', 'n_eff', 'eff_n']






	
climpred.metrics._effective_sample_size(forecast, reference, dim=None, **metric_kwargs)

	Effective sample size for temporally correlated data.


Note

Weights are not included here due to the dependence on temporal autocorrelation.



The effective sample size extracts the number of independent samples
between two time series being correlated. This is derived by assessing
the magnitude of the lag-1 autocorrelation coefficient in each of the time series
being correlated. A higher autocorrelation induces a lower effective sample
size which raises the correlation coefficient for a given p value.

The effective sample size is used in computing the effective p value. See
pearson_r_eff_p_value and spearman_r_eff_p_value.


[image: N_{eff} = N\left( \frac{1 -            \rho_{f}\rho_{o}}{1 + \rho_{f}\rho_{o}} \right),]


where [image: \rho_{f}] and [image: \rho_{o}] are the lag-1 autocorrelation
coefficients for the forecast and observations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	N/A



	orientation

	positive










References


	Bretherton, Christopher S., et al. “The effective number of spatial degrees of
freedom of a time-varying field.” Journal of climate 12.7 (1999): 1990-2009.











Pearson Correlation Effective p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [4]: print(f"\n\nKeywords: {metric_aliases['pearson_r_eff_p_value']}")


Keywords: ['pearson_r_eff_p_value', 'p_pval_eff', 'pvalue_eff', 'pval_eff']






	
climpred.metrics._pearson_r_eff_p_value(forecast, reference, dim=None, **metric_kwargs)

	Probability that forecast and reference are linearly uncorrelated, accounting
for autocorrelation.


Note

Weights are not included here due to the dependence on temporal autocorrelation.



The effective p value is computed by replacing the sample size [image: N] in the
t-statistic with the effective sample size, [image: N_{eff}]. The same Pearson
product-moment correlation coefficient [image: r] is used as when computing the
standard p value.


[image: t = r\sqrt{ \frac{N_{eff} - 2}{1 - r^{2}} },]


where [image: N_{eff}] is computed via the autocorrelation in the forecast and
observations.


[image: N_{eff} = N\left( \frac{1 -            \rho_{f}\rho_{o}}{1 + \rho_{f}\rho_{o}} \right),]


where [image: \rho_{f}] and [image: \rho_{o}] are the lag-1 autocorrelation
coefficients for the forecast and observations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	1.0



	orientation

	negative











See also


	climpred.effective_sample_size


	climpred.spearman_r_eff_p_value






References


	Bretherton, Christopher S., et al. “The effective number of spatial degrees of
freedom of a time-varying field.” Journal of climate 12.7 (1999): 1990-2009.











Spearman’s Rank Correlation Coefficient

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [5]: print(f"\n\nKeywords: {metric_aliases['spearman_r']}")


Keywords: ['spearman_r', 'sacc', 'sr']






	
climpred.metrics._spearman_r(forecast, reference, dim=None, **metric_kwargs)

	Spearman’s rank correlation coefficient.


[image: corr = \mathrm{pearsonr}(ranked(f), ranked(o))]


This correlation coefficient is nonparametric and assesses how well the relationship
between the forecast and observations can be described using a monotonic function.
It is computed by first ranking the forecasts and observations, and then correlating
those ranks using the pearson_r correlation.

This is also known as the anomaly correlation coefficient (ACC) when comparing
anomalies, although the Pearson product-moment correlation coefficient
(pearson_r) is typically used when computing the ACC.


Note

Use metric spearman_r_p_value or spearman_r_eff_p_value to get the
corresponding p value.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	-1.0



	maximum

	1.0



	perfect

	1.0



	orientation

	positive











See also


	xskillscore.spearman_r


	xskillscore.spearman_r_p_value


	climpred.spearman_r_p_value


	climpred.spearman_r_eff_p_value













Spearman’s Rank Correlation Coefficient p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [6]: print(f"\n\nKeywords: {metric_aliases['spearman_r_p_value']}")


Keywords: ['spearman_r_p_value', 's_pval', 'spvalue', 'spval']






	
climpred.metrics._spearman_r_p_value(forecast, reference, dim=None, **metric_kwargs)

	Probability that forecast and reference are monotonically uncorrelated.

Two-tailed p value associated with the Spearman’s rank correlation
coefficient (spearman_r), assuming that all samples are independent. Use
spearman_r_eff_p_value to account for autocorrelation in the forecast
and observations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	1.0



	orientation

	negative











See also


	xskillscore.spearman_r


	xskillscore.spearman_r_p_value


	climpred.spearman_r


	climpred.spearman_r_eff_p_value













Spearman’s Rank Correlation Effective p value

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [7]: print(f"\n\nKeywords: {metric_aliases['spearman_r_eff_p_value']}")


Keywords: ['spearman_r_eff_p_value', 's_pval_eff', 'spvalue_eff', 'spval_eff']






	
climpred.metrics._spearman_r_eff_p_value(forecast, reference, dim=None, **metric_kwargs)

	Probability that forecast and reference are monotonically uncorrelated,
accounting for autocorrelation.


Note

Weights are not included here due to the dependence on temporal autocorrelation.



The effective p value is computed by replacing the sample size [image: N] in the
t-statistic with the effective sample size, [image: N_{eff}]. The same Spearman’s
rank correlation coefficient [image: r] is used as when computing the standard p
value.


[image: t = r\sqrt{ \frac{N_{eff} - 2}{1 - r^{2}} },]


where [image: N_{eff}] is computed via the autocorrelation in the forecast and
observations.


[image: N_{eff} = N\left( \frac{1 -            \rho_{f}\rho_{o}}{1 + \rho_{f}\rho_{o}} \right),]


where [image: \rho_{f}] and [image: \rho_{o}] are the lag-1 autocorrelation
coefficients for the forecast and observations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	1.0



	orientation

	negative











See also


	climpred.effective_sample_size


	climpred.pearson_r_eff_p_value






References


	Bretherton, Christopher S., et al. “The effective number of spatial degrees of
freedom of a time-varying field.” Journal of climate 12.7 (1999): 1990-2009.













Distance Metrics

This class of metrics simply measures the distance (or difference) between forecasted
values and observed values.


Mean Squared Error (MSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [8]: print(f"\n\nKeywords: {metric_aliases['mse']}")


Keywords: ['mse']






	
climpred.metrics._mse(forecast, reference, dim=None, **metric_kwargs)

	Mean Sqaure Error (MSE).


[image: MSE = \overline{(f - o)^{2}}]


The average of the squared difference between forecasts and observations. This
incorporates both the variance and bias of the estimator. Because the error is
squared, it is more sensitive to large forecast errors than mae, and thus a
more conservative metric. For example, a single error of 2°C counts the same as
two 1°C errors when using mae. On the other hand, the 2°C error counts double
for mse. See Jolliffe and Stephenson, 2011.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative











See also


	xskillscore.mse






References


	Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A
Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, Ltd,
Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-0-470-66071-3.
URL: http://doi.wiley.com/10.1002/9781119960003.











Root Mean Square Error (RMSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [9]: print(f"\n\nKeywords: {metric_aliases['rmse']}")


Keywords: ['rmse']






	
climpred.metrics._rmse(forecast, reference, dim=None, **metric_kwargs)

	Root Mean Sqaure Error (RMSE).


[image: RMSE = \sqrt{\overline{(f - o)^{2}}}]


The square root of the average of the squared differences between forecasts and
observations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative











See also


	xskillscore.rmse













Mean Absolute Error (MAE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [10]: print(f"\n\nKeywords: {metric_aliases['mae']}")


Keywords: ['mae']






	
climpred.metrics._mae(forecast, reference, dim=None, **metric_kwargs)

	Mean Absolute Error (MAE).


[image: MAE = \overline{|f - o|}]


The average of the absolute differences between forecasts and observations. A more
robust measure of forecast accuracy than mse which is sensitive to large outlier
forecast errors.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative











See also


	xskillscore.mae






References


	Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A
Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, Ltd,
Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-0-470-66071-3.
URL: http://doi.wiley.com/10.1002/9781119960003.











Median Absolute Error

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [11]: print(f"\n\nKeywords: {metric_aliases['median_absolute_error']}")


Keywords: ['median_absolute_error']






	
climpred.metrics._median_absolute_error(forecast, reference, dim=None, **metric_kwargs)

	Median Absolute Error.


[image: median(|f - o|)]


The median of the absolute differences between forecasts and observations. Applying
the median function to absolute error makes it more robust to outliers.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative











See also


	xskillscore.median_absolute_error















Normalized Distance Metrics

Distance metrics like mse can be normalized to 1. The normalization factor
depends on the comparison type choosen. For example, the distance between an ensemble
member and the ensemble mean is half the distance of an ensemble member with other
ensemble members. See _get_norm_factor().


Normalized Mean Square Error (NMSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [12]: print(f"\n\nKeywords: {metric_aliases['nmse']}")


Keywords: ['nmse', 'nev']






	
climpred.metrics._nmse(forecast, reference, dim=None, **metric_kwargs)

	Normalized MSE (NMSE), also known as Normalized Ensemble Variance (NEV).

Mean Square Error (mse) normalized by the variance of the observations.


[image: NMSE = NEV = \frac{MSE}{\sigma^2_{o}\cdot fac}      = \frac{\overline{(f - o)^{2}}}{\sigma^2_{o} \cdot fac},]


where [image: fac] is 1 when using comparisons involving the ensemble mean (m2e,
e2c, e2r) and 2 when using comparisons involving individual ensemble
members (m2c, m2m, m2r). See
_get_norm_factor().


Note

climpred uses a single-valued internal reference forecast for the
NMSE, in the terminology of Murphy 1988. I.e., we use a single
climatological variance of the reference within the experimental
window for normalizing MSE.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.


	comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor()
(Handled internally by the compute functions)









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative



	better than climatology

	0.0 - 1.0



	worse than climatology

	> 1.0










References


	Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated
North Atlantic Multidecadal Variability.” Climate Dynamics 13,
no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.


	Murphy, Allan H. “Skill Scores Based on the Mean Square Error and
Their Relationships to the Correlation Coefficient.” Monthly Weather
Review 116, no. 12 (December 1, 1988): 2417–24.
https://doi.org/10/fc7mxd.











Normalized Mean Absolute Error (NMAE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [13]: print(f"\n\nKeywords: {metric_aliases['nmae']}")


Keywords: ['nmae']






	
climpred.metrics._nmae(forecast, reference, dim=None, **metric_kwargs)

	Normalized Mean Absolute Error (NMAE).

Mean Absolute Error (mae) normalized by the standard deviation of the
observations.


[image: NMAE = \frac{MAE}{\sigma_{o} \cdot fac}      = \frac{\overline{|f - o|}}{\sigma_{o} \cdot fac},]


where [image: fac] is 1 when using comparisons involving the ensemble mean (m2e,
e2c, e2r) and 2 when using comparisons involving individual ensemble
members (m2c, m2m, m2r). See
_get_norm_factor().


Note

climpred uses a single-valued internal reference forecast for the
NMAE, in the terminology of Murphy 1988. I.e., we use a single
climatological standard deviation of the reference within the experimental
window for normalizing MAE.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.


	comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor()
(Handled internally by the compute functions)









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative



	better than climatology

	0.0 - 1.0



	worse than climatology

	> 1.0










References


	Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated
North Atlantic Multidecadal Variability.” Climate Dynamics 13, no.
7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.


	Murphy, Allan H. “Skill Scores Based on the Mean Square Error and
Their Relationships to the Correlation Coefficient.” Monthly Weather
Review 116, no. 12 (December 1, 1988): 2417–24.
https://doi.org/10/fc7mxd.











Normalized Root Mean Square Error (NRMSE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [14]: print(f"\n\nKeywords: {metric_aliases['nrmse']}")


Keywords: ['nrmse']






	
climpred.metrics._nrmse(forecast, reference, dim=None, **metric_kwargs)

	Normalized Root Mean Square Error (NRMSE).

Root Mean Square Error (rmse) normalized by the standard deviation of the
observations.


[image: NRMSE = \frac{RMSE}{\sigma_{o}\cdot\sqrt{fac}}       = \sqrt{\frac{MSE}{\sigma^{2}_{o}\cdot fac}}       = \sqrt{ \frac{\overline{(f - o)^{2}}}{ \sigma^2_{o}\cdot fac}},]


where [image: fac] is 1 when using comparisons involving the ensemble mean (m2e,
e2c, e2r) and 2 when using comparisons involving individual ensemble
members (m2c, m2m, m2r). See
_get_norm_factor().


Note

climpred uses a single-valued internal reference forecast for the
NRMSE, in the terminology of Murphy 1988. I.e., we use a single
climatological variance of the reference within the experimental
window for normalizing RMSE.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.


	comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor()
(Handled internally by the compute functions)









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative



	better than climatology

	0.0 - 1.0



	worse than climatology

	> 1.0










References


	Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong
Yang, Anthony Rosati, and Rich Gudgel. “Regional Arctic Sea–Ice
Prediction: Potential versus Operational Seasonal Forecast Skill.”
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.


	Hawkins, Ed, Steffen Tietsche, Jonathan J. Day, Nathanael Melia, Keith
Haines, and Sarah Keeley. “Aspects of Designing and Evaluating
Seasonal-to-Interannual Arctic Sea-Ice Prediction Systems.” Quarterly
Journal of the Royal Meteorological Society 142, no. 695
(January 1, 2016): 672–83. https://doi.org/10/gfb3pn.


	Murphy, Allan H. “Skill Scores Based on the Mean Square Error and
Their Relationships to the Correlation Coefficient.” Monthly Weather
Review 116, no. 12 (December 1, 1988): 2417–24.
https://doi.org/10/fc7mxd.











Mean Square Error Skill Score (MSESS)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [15]: print(f"\n\nKeywords: {metric_aliases['msess']}")


Keywords: ['msess', 'ppp', 'msss']






	
climpred.metrics._msess(forecast, reference, dim=None, **metric_kwargs)

	Mean Squared Error Skill Score (MSESS).


[image: MSESS = 1 - \frac{MSE}{\sigma^2_{ref} \cdot fac} =        1 - \frac{\overline{(f - o)^{2}}}{\sigma^2_{ref} \cdot fac},]


where [image: fac] is 1 when using comparisons involving the ensemble mean (m2e,
e2c, e2r) and 2 when using comparisons involving individual ensemble
members (m2c, m2m, m2r). See
_get_norm_factor().

This skill score can be intepreted as a percentage improvement in accuracy. I.e.,
it can be multiplied by 100%.


Note

climpred uses a single-valued internal reference forecast for the
MSSS, in the terminology of Murphy 1988. I.e., we use a single
climatological variance of the reference within the experimental
window for normalizing MSE.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.


	comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor()
(Handled internally by the compute functions)









	Details:

	





	minimum

	-∞



	maximum

	1.0



	perfect

	1.0



	orientation

	positive



	better than climatology

	> 0.0



	equal to climatology

	0.0



	worse than climatology

	< 0.0










References


	Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated
North Atlantic Multidecadal Variability.” Climate Dynamics 13, no. 7–8
(August 1, 1997): 459–87. https://doi.org/10/ch4kc4.


	Murphy, Allan H. “Skill Scores Based on the Mean Square Error and
Their Relationships to the Correlation Coefficient.” Monthly Weather
Review 116, no. 12 (December 1, 1988): 2417–24.
https://doi.org/10/fc7mxd.


	Pohlmann, Holger, Michael Botzet, Mojib Latif, Andreas Roesch, Martin
Wild, and Peter Tschuck. “Estimating the Decadal Predictability of a
Coupled AOGCM.” Journal of Climate 17, no. 22 (November 1, 2004):
4463–72. https://doi.org/10/d2qf62.


	Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong
Yang, Anthony Rosati, and Rich Gudgel. “Regional Arctic Sea–Ice
Prediction: Potential versus Operational Seasonal Forecast Skill.
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.











Mean Absolute Percentage Error (MAPE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [16]: print(f"\n\nKeywords: {metric_aliases['mape']}")


Keywords: ['mape']






	
climpred.metrics._mape(forecast, reference, dim=None, **metric_kwargs)

	Mean Absolute Percentage Error (MAPE).

Mean absolute error (mae) expressed as a percentage error relative to the
observations.


[image: MAPE = \frac{1}{n} \sum \frac{|f-o|}{|o|}]



	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	0.0



	orientation

	negative











See also


	xskillscore.mape













Symmetric Mean Absolute Percentage Error (sMAPE)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [17]: print(f"\n\nKeywords: {metric_aliases['smape']}")


Keywords: ['smape']






	
climpred.metrics._smape(forecast, reference, dim=None, **metric_kwargs)

	Symmetric Mean Absolute Percentage Error (sMAPE).

Similar to the Mean Absolute Percentage Error (mape), but sums the forecast and
observation mean in the denominator.


[image: sMAPE = \frac{1}{n} \sum \frac{|f-o|}{|f|+|o|}]



	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	0.0



	orientation

	negative











See also


	xskillscore.smape













Unbiased Anomaly Correlation Coefficient (uACC)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [18]: print(f"\n\nKeywords: {metric_aliases['uacc']}")


Keywords: ['uacc']






	
climpred.metrics._uacc(forecast, reference, dim=None, **metric_kwargs)

	Bushuk’s unbiased Anomaly Correlation Coefficient (uACC).

This is typically used in perfect model studies. Because the perfect model Anomaly
Correlation Coefficient (ACC) is strongly state dependent, a standard ACC (e.g. one
computed using pearson_r) will be highly sensitive to the set of start dates
chosen for the perfect model study. The Mean Square Skill Score (MSSS) can be
related directly to the ACC as MSSS = ACC^(2) (see Murphy 1988 and
Bushuk et al. 2019), so the unbiased ACC can be derived as uACC = sqrt(MSSS).


[image: uACC = \sqrt{MSSS}      = \sqrt{1 - \frac{\overline{(f - o)^{2}}}{\sigma^2_{ref} \cdot fac}},]


where [image: fac] is 1 when using comparisons involving the ensemble mean (m2e,
e2c, e2r) and 2 when using comparisons involving individual ensemble
members (m2c, m2m, m2r). See
_get_norm_factor().


Note

Because of the square root involved, any negative MSSS values are
automatically converted to NaNs.




	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.


	comparison (str) – Name comparison needed for normalization factor fac, see
_get_norm_factor()
(Handled internally by the compute functions)









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	1.0



	orientation

	positive



	better than climatology

	> 0.0



	equal to climatology

	0.0










References


	Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel
Vecchi, Xiaosong Yang, Anthony Rosati, and Rich Gudgel. “Regional
Arctic Sea–Ice Prediction: Potential versus Operational Seasonal
Forecast Skill.” Climate Dynamics, June 9, 2018.
https://doi.org/10/gd7hfq.


	Allan H. Murphy. Skill Scores Based on the Mean Square Error and Their
Relationships to the Correlation Coefficient. Monthly Weather Review,
116(12):2417–2424, December 1988. https://doi.org/10/fc7mxd.













Murphy Decomposition Metrics

Metrics derived in [Murphy1988] which decompose the MSESS into a correlation term,
a conditional bias term, and an unconditional bias term. See
https://www-miklip.dkrz.de/about/murcss/ for a walk through of the decomposition.


Standard Ratio

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [19]: print(f"\n\nKeywords: {metric_aliases['std_ratio']}")


Keywords: ['std_ratio']






	
climpred.metrics._std_ratio(forecast, reference, dim=None, **metric_kwargs)

	Ratio of standard deviations of the forecast over the reference.


[image: \text{std ratio} = \frac{\sigma_f}{\sigma_o},]


where [image: \sigma_{f}] and [image: \sigma_{o}] are the standard deviations of the
forecast and the observations over the experimental period, respectively.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
functions.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	1.0



	orientation

	N/A










References


	https://www-miklip.dkrz.de/about/murcss/











Conditional Bias

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [20]: print(f"\n\nKeywords: {metric_aliases['conditional_bias']}")


Keywords: ['conditional_bias', 'c_b', 'cond_bias']






	
climpred.metrics._conditional_bias(forecast, reference, dim=None, **metric_kwargs)

	Conditional bias between forecast and reference.


[image: \text{conditional bias} = r_{fo} - \frac{\sigma_f}{\sigma_o},]


where [image: \sigma_{f}] and [image: \sigma_{o}] are the standard deviations of the
forecast and observations over the experimental period, respectively.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
functions.









	Details:

	





	minimum

	-∞



	maximum

	1.0



	perfect

	0.0



	orientation

	negative










References


	https://www-miklip.dkrz.de/about/murcss/











Unconditional Bias

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [21]: print(f"\n\nKeywords: {metric_aliases['unconditional_bias']}")


Keywords: ['unconditional_bias', 'u_b', 'bias']





Simple bias of the forecast minus the observations.


	
climpred.metrics._unconditional_bias(forecast, reference, dim=None, **metric_kwargs)

	Unconditional bias.


[image: bias = f - o]



	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
functions.









	Details:

	





	minimum

	-∞



	maximum

	∞



	perfect

	0.0



	orientation

	negative










References


	https://www.cawcr.gov.au/projects/verification/


	https://www-miklip.dkrz.de/about/murcss/











Bias Slope

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [22]: print(f"\n\nKeywords: {metric_aliases['bias_slope']}")


Keywords: ['bias_slope']






	
climpred.metrics._bias_slope(forecast, reference, dim=None, **metric_kwargs)

	Bias slope between reference and forecast standard deviations.


[image: \text{bias slope} = \frac{s_{o}}{s_{f}} \cdot r_{fo},]


where [image: r_{fo}] is the Pearson product-moment correlation between the forecast
and the observations and [image: s_{o}] and [image: s_{f}] are the standard deviations
of the observations and forecast over the experimental period, respectively.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
functions.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	1.0



	orientation

	negative










References


	https://www-miklip.dkrz.de/about/murcss/











Murphy’s Mean Square Error Skill Score

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [23]: print(f"\n\nKeywords: {metric_aliases['msess_murphy']}")


Keywords: ['msess_murphy', 'msss_murphy']






	
climpred.metrics._msess_murphy(forecast, reference, dim=None, **metric_kwargs)

	Murphy’s Mean Square Error Skill Score (MSESS).


[image: MSESS_{Murphy} = r_{fo}^2 - [\text{conditional bias}]^2 -         [\frac{\text{(unconditional) bias}}{\sigma_o}]^2,]


where [image: r_{fo}^{2}] represents the Pearson product-moment correlation
coefficient between the forecast and observations and [image: \sigma_{o}]
represents the standard deviation of the observations over the experimental
period. See conditional_bias and unconditional_bias for their respective
formulations.


	Parameters

	
	forecast (xarray object) – Forecast.


	reference (xarray object) – Reference (e.g. observations, control run).


	dim (str) – Dimension(s) to perform metric over. Automatically set by compute
function.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	-∞



	maximum

	1.0



	perfect

	1.0



	orientation

	positive











See also


	climpred.pearson_r


	climpred.conditional_bias


	climpred.unconditional_bias






References


	https://www-miklip.dkrz.de/about/murcss/


	Murphy, Allan H. “Skill Scores Based on the Mean Square Error and
Their Relationships to the Correlation Coefficient.” Monthly Weather
Review 116, no. 12 (December 1, 1988): 2417–24.
https://doi.org/10/fc7mxd.















Probabilistic

Probabilistic metrics include the spread of the ensemble simulations in their
calculations and assign a probability value between 0 and 1 to their forecasts
[Jolliffe2011].


Continuous Ranked Probability Score (CRPS)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [24]: print(f"\n\nKeywords: {metric_aliases['crps']}")


Keywords: ['crps']






	
climpred.metrics._crps(forecast, reference, **metric_kwargs)

	Continuous Ranked Probability Score (CRPS).

The CRPS can also be considered as the probabilistic Mean Absolute Error (mae).
It compares the empirical distribution of an ensemble forecast to a scalar
observation. Smaller scores indicate better skill.


[image: CRPS = \int_{-\infty}^{\infty} (F(f) - H(f - o))^{2} df,]


where [image: F(f)] is the cumulative distribution function (CDF) of the forecast
(since the observations are not assigned a probability), and H() is the Heaviside
step function where the value is 1 if the argument is positive (i.e., the forecast
overestimates observations) or zero (i.e., the forecast equals observations) and is
0 otherwise (i.e., the forecast is less than observations).


Note

The CRPS is expressed in the same unit as the observed variable. It generalizes
the Mean Absolute Error (MAE), and reduces to the MAE if the forecast is
determinstic.




	Parameters

	
	forecast (xr.object) – Forecast with member dim.


	reference (xr.object) – References without member dim (e.g. observations,
control run).


	metric_kwargs (xr.object) – If provided, the CRPS is calculated exactly with the
assigned probability weights to each forecast. Weights should be positive,
but do not need to be normalized. By default, each forecast is weighted
equally.









	Details:

	





	minimum

	0.0



	maximum

	∞



	perfect

	0.0



	orientation

	negative










References


	Matheson, James E., and Robert L. Winkler. “Scoring Rules for
Continuous Probability Distributions.” Management Science 22, no. 10
(June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.


	https://www.lokad.com/continuous-ranked-probability-score





See also


	properscoring.crps_ensemble


	xskillscore.crps_ensemble













Continuous Ranked Probability Skill Score (CRPSS)

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [25]: print(f"\n\nKeywords: {metric_aliases['crpss']}")


Keywords: ['crpss']






	
climpred.metrics._crpss(forecast, reference, **metric_kwargs)

	Continuous Ranked Probability Skill Score.

This can be used to assess whether the ensemble spread is a useful measure for the
forecast uncertainty by comparing the CRPS of the ensemble forecast to that of a
reference forecast with the desired spread.


[image: CRPSS = 1 - \frac{CRPS_{initialized}}{CRPS_{clim}}]



Note

When assuming a Gaussian distribution of forecasts, use default
gaussian=True. If not gaussian, you may specify the distribution type,
xmin/xmax/tolerance for integration (see xskillscore.crps_quadrature).




	Parameters

	
	forecast (xr.object) – Forecast with member dim.


	reference (xr.object) – References without member dim.


	gaussian (bool, optional) – If True, assum Gaussian distribution for baseline
skill. Defaults to True.


	cdf_or_dist (scipy.stats) – Function which returns the cumulative density of the
forecast at value x. This can also be an object with
a callable cdf() method such as a
scipy.stats.distribution object. Defaults to
scipy.stats.norm.


	xmin (float) – Lower bounds for integration. Only use if not assuming Gaussian.


	xmax (float) – 


	tol (float, optional) – The desired accuracy of the CRPS. Larger values will
speed up integration. If tol is set to None,
bounds errors or integration tolerance errors will be
ignored. Only use if not assuming Gaussian.









	Details:

	





	minimum

	-∞



	maximum

	1.0



	perfect

	1.0



	orientation

	positive



	better than climatology

	> 0.0



	worse than climatology

	< 0.0










References


	Matheson, James E., and Robert L. Winkler. “Scoring Rules for
Continuous Probability Distributions.” Management Science 22, no. 10
(June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.


	Gneiting, Tilmann, and Adrian E Raftery. “Strictly Proper Scoring
Rules, Prediction, and Estimation.” Journal of the American
Statistical Association 102, no. 477 (March 1, 2007): 359–78.
https://doi.org/10/c6758w.




Example

>>> compute_perfect_model(ds, control, metric='crpss')
>>> compute_perfect_model(ds, control, metric='crpss', gaussian=False,
                          cdf_or_dist=scipy.stats.norm, xminimum=-10,
                          xmaximum=10, tol=1e-6)






See also


	properscoring.crps_ensemble


	xskillscore.crps_ensemble













Continuous Ranked Probability Skill Score Ensemble Spread

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [26]: print(f"\n\nKeywords: {metric_aliases['crpss_es']}")


Keywords: ['crpss_es']






	
climpred.metrics._crpss_es(forecast, reference, **metric_kwargs)

	Continuous Ranked Probability Skill Score Ensemble Spread.

If the ensemble variance is smaller than the observed mse, the ensemble is
said to be under-dispersive (or overconfident). An ensemble with variance larger
than the observations indicates one that is over-dispersive (underconfident).


[image: CRPSS = 1 - \frac{CRPS(\sigma^2_f)}{CRPS(\sigma^2_o)}]



	Parameters

	
	forecast (xr.object) – Forecast with member dim.


	reference (xr.object) – References without member dim.


	weights (xarray object, optional) – Weights to apply over dimension. Defaults to
None.


	skipna (bool, optional) – If True, skip NaNs over dimension being applied to.
Defaults to False.









	Details:

	





	minimum

	-∞



	maximum

	0.0



	perfect

	0.0



	orientation

	positive



	under-dispersive

	> 0.0



	over-dispersive

	< 0.0










References


	Kadow, Christopher, Sebastian Illing, Oliver Kunst, Henning W. Rust,
Holger Pohlmann, Wolfgang A. Müller, and Ulrich Cubasch. “Evaluation
of Forecasts by Accuracy and Spread in the MiKlip Decadal Climate
Prediction System.” Meteorologische Zeitschrift, December 21, 2016,
631–43. https://doi.org/10/f9jrhw.





	Range:

	
	perfect: 0


	else: negative















Brier Score

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [27]: print(f"\n\nKeywords: {metric_aliases['brier_score']}")


Keywords: ['brier_score', 'brier', 'bs']






	
climpred.metrics._brier_score(forecast, reference, **metric_kwargs)

	Brier Score.

The Mean Square Error (mse) of probabilistic two-category forecasts where the
observations are either 0 (no occurrence) or 1 (occurrence) and forecast probability
may be arbitrarily distributed between occurrence and non-occurrence. The Brier
Score equals zero for perfect (single-valued) forecasts and one for forecasts that
are always incorrect.


[image: BS(f, o) = (f_1 - o)^2,]


where [image: f_1] is the forecast probability of [image: o=1].


Note

The Brier Score requires that the reference is binary, i.e., can be described as
one (a “hit”) or zero (a “miss”).




	Parameters

	
	forecast (xr.object) – Forecast with member dim.


	reference (xr.object) – References without member dim.


	func (function) – Function to be applied to reference and forecasts
and then mean('member') to get forecasts and
reference in interval [0,1].









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	0.0



	orientation

	negative








	Reference:

	
	Brier, Glenn W. Verification of forecasts expressed in terms of
probability.” Monthly Weather Review 78, no. 1 (1950).
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.


	https://www.nws.noaa.gov/oh/rfcdev/docs/
Glossary_Forecast_Verification_Metrics.pdf









See also


	properscoring.brier_score


	xskillscore.brier_score






Example

>>> def pos(x): return x > 0
>>> compute_perfect_model(ds, control, metric='brier_score', func=pos)












Threshold Brier Score

# Enter any of the below keywords in ``metric=...`` for the compute functions.
In [28]: print(f"\n\nKeywords: {metric_aliases['threshold_brier_score']}")


Keywords: ['threshold_brier_score', 'tbs']






	
climpred.metrics._threshold_brier_score(forecast, reference, **metric_kwargs)

	Brier score of an ensemble for exceeding given thresholds.


[image: CRPS = \int_f BS(F(f), H(f - o)) df,]


where [image: F(o) = \int_{f \leq o} p(f) df] is the cumulative distribution
function (CDF) of the forecast distribution [image: F], [image: o] is a point estimate
of the true observation (observational error is neglected), [image: BS] denotes the
Brier score and [image: H(x)] denotes the Heaviside step function, which we define
here as equal to 1 for [image: x \geq 0] and 0 otherwise.


	Parameters

	
	forecast (xr.object) – Forecast with member dim.


	reference (xr.object) – References without member dim.


	threshold (int, float, xr.object) – Threshold to check exceedance, see
properscoring.threshold_brier_score.









	Details:

	





	minimum

	0.0



	maximum

	1.0



	perfect

	0.0



	orientation

	negative










References


	Brier, Glenn W. Verification of forecasts expressed in terms of
probability.” Monthly Weather Review 78, no. 1 (1950).
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.





See also


	properscoring.threshold_brier_score


	xskillscore.threshold_brier_score






Example

>>> compute_perfect_model(ds, control,
                          metric='threshold_brier_score', threshold=.5)














User-defined metrics

You can also construct your own metrics via the climpred.metrics.Metric
class.







	Metric(name, function, positive, …[, …])

	Master class for all metrics.






First, write your own metric function, similar to the existing ones with required
arguments forecast, reference, dim=None, and **metric_kwargs:

from climpred.metrics import Metric

def _my_msle(forecast, reference, dim=None, **metric_kwargs):
    """Mean squared logarithmic error (MSLE).
    https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/mean-squared-logarithmic-error."""
    return ( (np.log(forecast + 1) + np.log(reference + 1) ) ** 2).mean(dim)





Then initialize this metric function with climpred.metrics.Metric:

_my_msle = Metric(
    name='my_msle',
    function=_my_msle,
    probabilistic=False,
    positive=False,
    unit_power=0,
    )





Finally, compute skill based on your own metric:

skill = compute_perfect_model(ds, control, metric=_my_msle)





Once you come up with an useful metric for your problem, consider contributing
this metric to climpred, so all users can benefit from your metric, see
contributing.




References


	Jolliffe2011(1,2)

	Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, Ltd, Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-0-470-66071-3. URL: http://doi.wiley.com/10.1002/9781119960003.



	Murphy1988

	Allan H. Murphy. Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Monthly Weather Review, 116(12):2417–2424, December 1988. https://doi.org/10/fc7mxd.











          

      

      

    

  

    
      
          
            
  


Comparisons

Forecast skill is always evaluated against a reference for verification. In ESM-based predictions,
it is common to compare the ensemble mean forecast against the reference.

In hindcast ensembles compute_hindcast(), this ensemble mean forecast
(comparison='e2r') is expected to perform better than individual ensemble members
(comparison='m2r') as the chaotic component of forecasts is expected to be suppressed by this
averaging, while the memory of the system sustains. [Boer2016]

HindcastEnsemble skill is computed by default as the ensemble mean
forecast against the reference (comparison='e2r').

In perfect-model frameworks compute_perfect_model(), there are even
more ways of comparisons. [Seferian2018] shows comparison of the ensemble members against the
control run (comparison='m2c') and ensemble members against all other ensemble members
(comparison='m2m'). Furthermore, using the ensemble mean forecast can be also verified against
one control member (comparison='e2c') or all members (comparison='m2e') as done in
[Griffies1997].

Perfect-model framework comparison defaults to the ensemble mean forecast verified against each
member in turns (comparison='m2e').

These different comparisons demand for a normalization factor to arrive at a normalized skill of 1,
when skill saturation is reached (ref: metrics).

While HindcastEnsemble skill is computed over all initializations init of the hindcast, the
resulting skill is a mean forecast skill over all initializations.

PerfectModelEnsemble skill is computed over a supervector comprised of all initializations and
members, which allows the computation of the ACC-based skill [Bushuk2018], but also returns a
mean forecast skill over all initializations.

The supervector approach shown in [Bushuk2018] and just calculating a distance-based metric like
rmse over the member dimension as in [Griffies1997] yield very similar results.


Compute over dimension

The optional argument dim defines over which dimension a metric is computed. We can apply a
metric over dim from ['init', 'member', ['member', 'init']] in
compute_perfect_model() and ['init', 'member']
in compute_hindcast(). The resulting skill is then reduced by this
dim. Therefore, applying a metric over dim='member' creates a skill for all initializations
individually. This can show the initial conditions dependence of skill. Likewise when computing
skill over 'init', we get skill for each member. This dim argument is different from the
comparison argument which just specifies how forecast and reference are defined.

However, this above logic applies to deterministic metrics. Probabilistic metrics need to be
applied to the member dimension and comparison from ['m2c', 'm2m'] in
compute_perfect_model() and 'm2r' comparison in
compute_hindcast(). Using a probabilistic metric automatically
switches internally to using dim='member'.




HindcastEnsemble

keyword: 'e2r'







	_e2r(ds, reference[, stack_dims])

	Compare the ensemble mean forecast to a reference in HindcastEnsemble.






keyword: 'm2r'







	_m2r(ds, reference[, stack_dims])

	Compares each member individually to a reference in HindcastEnsemble.









PerfectModelEnsemble

keyword: 'm2e'







	_m2e(ds[, stack_dims])

	Compare all members to ensemble mean while leaving out the reference in






keyword: 'm2c'







	_m2c(ds[, control_member, stack_dims])

	Compare all other members forecasts to control member verification.






keyword: 'm2m'







	_m2m(ds[, stack_dims])

	Compare all members to all others in turn while leaving out the verification member.






keyword: 'e2c'







	_e2c(ds[, control_member, stack_dims])

	Compare ensemble mean forecast to control member verification.









User-defined comparisons

You can also construct your own comparisons via the Comparison
class.







	Comparison(name, function, hindcast, …[, …])

	Master class for all comparisons.






First, write your own comparison function, similar to the existing ones. If a comparison should
also be used for probabilistic metrics, use stack_dims to return forecast with member
dimension and reference without. For deterministic metric, return forecast and reference
with identical dimensions:

from climpred.comparisons import Comparison, _drop_members

def _my_m2median_comparison(ds, stack_dims=True):
    """Identical to m2e but median."""
    reference_list = []
    forecast_list = []
    supervector_dim = 'member'
    for m in ds.member.values:
        forecast = _drop_members(ds, rmd_member=[m]).median('member')
        reference = ds.sel(member=m).squeeze()
        forecast_list.append(forecast)
        reference_list.append(reference)
    reference = xr.concat(reference_list, supervector_dim)
    forecast = xr.concat(forecast_list, supervector_dim)
    forecast[supervector_dim] = np.arange(forecast[supervector_dim].size)
    reference[supervector_dim] = np.arange(reference[supervector_dim].size)
    return forecast, reference





Then initialize this comparison function with Comparison:

__my_m2median_comparison = Comparison(
    name='m2me',
    function=_my_m2median_comparison,
    probabilistic=False,
    hindcast=False)





Finally, compute skill based on your own comparison:

skill = compute_perfect_model(ds, control, metric='rmse', comparison=__my_m2median_comparison)





Once you come up with an useful comparison for your problem, consider contributing this comparison to climpred, so all users can benefit from your comparison, see contributing.
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Prediction Terminology

Terminology is often confusing and highly variable amongst those that make predictions
in the geoscience community. Here we define some common terms in climate prediction and
how we use them in climpred.


Simulation Design

Hindcast Ensemble: m ensemble members are initialized from a reference simulation
(generally a reconstruction from reanalysis) at n initialization dates and
integrated for l lead years [Boer2016]
(HindcastEnsemble).

Perfect Model Experiment: m ensemble members are initialized from a control
simulation at n randomly chosen initialization dates and integrated for l
lead years [Griffies1997] (PerfectModelEnsemble).

Reconstruction/Assimilation: A “reconstruction” is a model solution that uses
observations in some capacity to approximate historical conditions. This could be done
via a forced simulation, such as an OMIP run that uses a dynamical ocean/sea ice core
with reanalysis forcing from atmospheric winds. This could also be a fully data
assimilative model, which assimilates observations into the model solution.

Uninitialized Ensemble: In this framework, an uninitialized ensemble is one that
is generated by perturbing initial conditions only at one point in the historical run.
These are generated via micro (round-off error perturbations) or macro (starting from
completely different restart files) methods. Uninitialized ensembles are used to
approximate the magnitude of internal climate variability and to confidently extract
the forced response (ensemble mean) in the climate system. In climpred, we use
uninitialized ensembles as a baseline for how important (reoccurring) initializations
are for lending predictability to the system. Some modeling centers (such as NCAR)
provide a dynamical uninitialized ensemble (the CESM Large Ensemble) along with their
initialized prediction system (the CESM Decadal Prediction Large Ensemble). If this
isn’t available, one can approximate the unintiailized response by bootstrapping a
control simulation.




Forecast Assessment

Accuracy: The average degree of correspondence between individual pairs of forecasts
and observations [Murphy1988]; [Jolliffe2011]. Examples include Mean Absolute Error
(MAE) and Mean Square Error (MSE). See metrics.

Association: The overall strength of the relationship between individual pairs of
forecasts and observations [Jolliffe2011]. The primary measure of association is the
Anomaly Correlation Coefficient (ACC), which can be measured using the Pearson
product-moment correlation or Spearman’s Rank correlation. See
metrics.

(Potential) Predictability: This characterizes the “ability to be predicted”
rather than the current “ability to predict.” One acquires this by computing a metric
(like the anomaly correlation coefficient (ACC)) between the prediction ensemble and a
verification member (in a perfect-model setup) or the reconstruction that initialized
it (in a hindcast setup) [Meehl2013].

(Prediction) Skill: Skill assesses the ability of the forecasting system to predict
the real world, i.e. observations. It must be compared to some “standard of reference”
to truly be considered skill, such as climatology of persistence [Murphy1988].

Skill Score: The most generic skill score can be defined as the following
[Murphy1988]:


[image: S = \\frac{A_{f} - A_{r}}{A_{p} - A_{r}},]


where [image: A_{f}], [image: A_{p}], and [image: A_{r}] represent the accuracy of the
forecast being assessed, the accuracy of a perfect forecast, and the accuracy of the
reference forecast (e.g. persistence), respectively [Murphy1985]. Here, [image: S]
represents the improvement in accuracy of the forecasts over the reference forecasts
relative to the total possible improvement in accuracy. They are typically designed to
take a value of 1 for a perfect forecast and 0 for equivelant to the reference
forecast [Jolliffe2011].




Forecasting

Hindcast: Retrospective forecasts of the past initialized from a reconstruction
integrated under external forcing [Boer2016].

Prediction: Forecasts initialized from a reconstruction integrated into the future
with external forcing [Boer2016].

Projection An estimate of the future climate that is dependent on the externally
forced climate response, such as anthropogenic greenhouse gases, aerosols, and
volcanic eruptions [Meehl2013].
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Baseline Forecasts

To quantify the quality of an initialized forecast, it is useful to judge it against some simple
baseline forecast. climpred currently supports a persistence forecast, but future releases
will allow computation of other baseline forecasts. Consider opening a
Pull Request to get it implemented more quickly.

Persistence Forecast: Whatever is observed at the time of initialization is forecasted to
persist into the forecast period [Jolliffe2012]. You can compute this directly via
compute_persistence() or as a method of
HindcastEnsemble and
PerfectModelEnsemble.

Damped Persistence Forecast: (Not Implemented) The amplitudes of the anomalies reduce in time
exponentially at a time scale of the local autocorrelation [Yuan2016].


[image: v_{dp}(t) = v(0)e^{-\alpha t}]


Climatology: (Not Implemented) The average values at the temporal forecast resolution
(e.g., annual, monthly) over some long period, which is usually 30 years [Jolliffe2012].

Random Mechanism: (Not Implemented) A probability distribution is assigned to the possible
range of the variable being forecasted, and a sequence of forecasts is produced by taking a sequence
of independent values from that distribution [Jolliffe2012]. This would be similar to computing an
uninitialized forecast, using climpred’s compute_uninitialized()
function.
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API Reference

This page provides an auto-generated summary of climpred’s API.
For more details and examples, refer to the relevant chapters in the main part of the documentation.


High-Level Classes

A primary feature of climpred is our prediction ensemble objects,
HindcastEnsemble and
PerfectModelEnsemble. Users can append their initialized
ensemble to these classes, as well as an arbitrary number of references (assimilations,
reconstructions, observations), control runs, and uninitialized ensembles.


HindcastEnsemble

A HindcastEnsemble is a prediction ensemble that is initialized off of some form of
observations (an assimilation, renanalysis, etc.). Thus, it is anticipated that forecasts are
verified against observation-like references. Read more about the terminology
here.







	HindcastEnsemble(xobj)

	An object for climate prediction ensembles initialized by a data-like product.







Add and Retrieve Datasets







	HindcastEnsemble.__init__(xobj)

	Create a HindcastEnsemble object by inputting output from a prediction ensemble in xarray format.



	HindcastEnsemble.add_reference(xobj, name)

	Add a reference product for comparison to the initialized ensemble.



	HindcastEnsemble.add_uninitialized(xobj)

	Add a companion uninitialized ensemble for comparison to references.



	HindcastEnsemble.get_initialized()

	Returns the xarray dataset for the initialized ensemble.



	HindcastEnsemble.get_reference([name])

	Returns the given reference(s).



	HindcastEnsemble.get_uninitialized()

	Returns the xarray dataset for the uninitialized ensemble.









Analysis Functions







	HindcastEnsemble.compute_metric([refname, …])

	Compares the initialized ensemble to a given reference.



	HindcastEnsemble.compute_persistence([…])

	Compute a simple persistence forecast for a reference.



	HindcastEnsemble.compute_uninitialized([…])

	Compares the uninitialized ensemble to a given reference.









Pre-Processing







	HindcastEnsemble.smooth([smooth_kws])

	Smooth all entries of PredictionEnsemble in the same manner to be able to still calculate prediction skill afterwards.











PerfectModelEnsemble

A PerfectModelEnsemble is a prediction ensemble that is initialized off of a control simulation
for a number of randomly chosen initialization dates. Thus, forecasts cannot be verified against
real-world observations. Instead, they are compared to one another and to the
original control run. Read more about the terminology here.







	PerfectModelEnsemble(xobj)

	An object for “perfect model” climate prediction ensembles.







Add and Retrieve Datasets







	PerfectModelEnsemble.__init__(xobj)

	Create a PerfectModelEnsemble object by inputting output from the control run in xarray format.



	PerfectModelEnsemble.add_control(xobj)

	Add the control run that initialized the climate prediction ensemble.



	PerfectModelEnsemble.get_initialized()

	Returns the xarray dataset for the initialized ensemble.



	PerfectModelEnsemble.get_control()

	Returns the control as an xarray dataset.



	PerfectModelEnsemble.get_uninitialized()

	Returns the xarray dataset for the uninitialized ensemble.









Analysis Functions







	PerfectModelEnsemble.bootstrap([metric, …])

	Bootstrap ensemble simulations with replacement.



	PerfectModelEnsemble.compute_metric([…])

	Compares the initialized ensemble to the control run.



	PerfectModelEnsemble.compute_persistence([…])

	Compute a simple persistence forecast for the control run.



	PerfectModelEnsemble.compute_uninitialized([…])

	Compares the bootstrapped uninitialized run to the control run.









Generate Data







	PerfectModelEnsemble.generate_uninitialized()

	Generate an uninitialized ensemble by bootstrapping the initialized prediction ensemble.













Direct Function Calls

A user can directly call functions in climpred. This requires entering more arguments, e.g.
the initialized ensemble
Dataset/xarray.core.dataarray.DataArray directly as
well as a reference product or control run. Our object
HindcastEnsemble and
PerfectModelEnsemble wrap most of these functions, making the
analysis process much simpler. Once we have wrapped all of the functions in their entirety, we will
likely depricate the ability to call them directly.


Bootstrap







	bootstrap_compute(hind, reference[, hist, …])

	Bootstrap compute with replacement.



	bootstrap_hindcast(hind, hist, reference[, …])

	Bootstrap compute with replacement. Wrapper of



	bootstrap_perfect_model(ds, control[, …])

	Bootstrap compute with replacement. Wrapper of



	bootstrap_uninit_pm_ensemble_from_control(ds, …)

	Create a pseudo-ensemble from control run.



	bootstrap_uninitialized_ensemble(hind, hist)

	Resample uninitialized hindcast from historical members.



	dpp_threshold(control[, sig, bootstrap, dim])

	Calc DPP significance levels from re-sampled dataset.



	varweighted_mean_period_threshold(control[, …])

	Calc the variance-weighted mean period significance levels from re-sampled dataset.









Prediction







	compute_hindcast(hind, reference[, metric, …])

	Compute a predictability skill score against a reference



	compute_perfect_model(ds, control[, metric, …])

	Compute a predictability skill score for a perfect-model framework simulation dataset.



	compute_persistence(hind, reference[, …])

	Computes the skill of a persistence forecast from a simulation.



	compute_uninitialized(uninit, reference[, …])

	Compute a predictability score between an uninitialized ensemble and a reference.









Metrics







	Metric(name, function, positive, …[, …])

	Master class for all metrics.



	_get_norm_factor(comparison)

	Get normalization factor for normalizing distance metrics.









Comparisons







	Comparison(name, function, hindcast, …[, …])

	Master class for all comparisons.









Statistics







	autocorr(ds[, lag, dim, return_p])

	Calculate the lagged correlation of time series.



	corr(x, y[, dim, lag, return_p])

	Computes the Pearson product-moment coefficient of linear correlation.



	decorrelation_time(da[, r, dim])

	Calculate the decorrelaton time of a time series.



	dpp(ds[, dim, m, chunk])

	Calculates the Diagnostic Potential Predictability (dpp)



	rm_poly(ds, order[, dim])

	Returns xarray object with nth-order fit removed.



	rm_trend(da[, dim])

	Remove linear trend from time series.



	varweighted_mean_period(da[, dim])

	Calculate the variance weighted mean period of time series based on xrft.power_spectrum.









Tutorial







	load_dataset([name, cache, cache_dir, …])

	Load example data or a mask from an online repository.














          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble


	
class climpred.classes.HindcastEnsemble(xobj)

	An object for climate prediction ensembles initialized by a data-like
product.

HindcastEnsemble is a sub-class of PredictionEnsemble. It tracks all
simulations/observations associated with the prediction ensemble for easy
computation across multiple variables and products.

This object is built on xarray and thus requires the input object to
be an xarray Dataset or DataArray.


	
__init__(xobj)

	Create a HindcastEnsemble object by inputting output from a
prediction ensemble in xarray format.


	Parameters

	xobj (xarray object) – decadal prediction ensemble output.






	
reference

	Dictionary of various reference observations/simulations
to associate with the decadal prediction ensemble.






	
uninitialized

	Dictionary of companion (or bootstrapped)
uninitialized ensemble run.









Methods







	__init__(xobj)

	Create a HindcastEnsemble object by inputting output from a prediction ensemble in xarray format.



	add_reference(xobj, name)

	Add a reference product for comparison to the initialized ensemble.



	add_uninitialized(xobj)

	Add a companion uninitialized ensemble for comparison to references.



	compute_metric([refname, metric, …])

	Compares the initialized ensemble to a given reference.



	compute_persistence([refname, metric, max_dof])

	Compute a simple persistence forecast for a reference.



	compute_uninitialized([refname, metric, …])

	Compares the uninitialized ensemble to a given reference.



	get_initialized()

	Returns the xarray dataset for the initialized ensemble.



	get_reference([name])

	Returns the given reference(s).



	get_uninitialized()

	Returns the xarray dataset for the uninitialized ensemble.



	smooth([smooth_kws])

	Smooth all entries of PredictionEnsemble in the same manner to be able to still calculate prediction skill afterwards.














          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.__init__


	
HindcastEnsemble.__init__(xobj)

	Create a HindcastEnsemble object by inputting output from a
prediction ensemble in xarray format.


	Parameters

	xobj (xarray object) – decadal prediction ensemble output.






	
reference

	Dictionary of various reference observations/simulations
to associate with the decadal prediction ensemble.






	
climpred.classes.uninitialized

	Dictionary of companion (or bootstrapped)
uninitialized ensemble run.













          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.add_reference


	
HindcastEnsemble.add_reference(xobj, name)

	Add a reference product for comparison to the initialized ensemble.


	Parameters

	
	xobj (xarray object) – Dataset/DataArray being appended to the
HindcastEnsemble object.


	name (str) – Name of this object (e.g., “reconstruction”)
















          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.add_uninitialized


	
HindcastEnsemble.add_uninitialized(xobj)

	Add a companion uninitialized ensemble for comparison to references.


	Parameters

	xobj (xarray object) – Dataset/DataArray of the uninitialzed
ensemble.













          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.get_initialized


	
HindcastEnsemble.get_initialized()

	Returns the xarray dataset for the initialized ensemble.









          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.get_reference


	
HindcastEnsemble.get_reference(name=None)

	Returns the given reference(s).


	Parameters

	name (str) – Name of the reference to return (optional)



	Returns

	Dictionary of xarray datasets (if name is None) or single xarray
dataset.













          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.get_uninitialized


	
HindcastEnsemble.get_uninitialized()

	Returns the xarray dataset for the uninitialized ensemble.









          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.compute_metric


	
HindcastEnsemble.compute_metric(refname=None, metric='pearson_r', comparison='e2r', max_dof=False)

	Compares the initialized ensemble to a given reference.

This will automatically run the comparison against all shared variables
between the initialized ensemble and reference.


	Parameters

	
	refname (str) – Name of reference to compare to. If None, compare to all
references.


	metric (str, default 'pearson_r') – Metric to apply in the comparison.


	comparison (str, default 'e2r') – How to compare to the reference. (‘e2r’ for ensemble mean to
reference. ‘m2r’ for each individual member to reference)


	max_dof (bool, default False) – If True, maximize the degrees of freedom for each lag calculation.






	Returns

	Dataset of comparison results (if comparing to one reference),
or dictionary of Datasets with keys corresponding to reference
name.













          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.compute_persistence


	
HindcastEnsemble.compute_persistence(refname=None, metric='pearson_r', max_dof=False)

	Compute a simple persistence forecast for a reference.

This simply applies some metric between the reference and itself out
to some lag (i.e., an ACF in the case of pearson r).


	Parameters

	
	refname (str, default None) – Name of reference to compute the persistence forecast for. If
None, compute for all references.


	metric (str, default 'pearson_r') – Metric to apply to the persistence forecast.


	max_dof (bool, default False) – If True, maximize the degrees of freedom for each lag calculation.






	Returns

	Dataset of persistence forecast results (if refname is declared),
or dictionary of Datasets with keys corresponding to reference
name.






	Reference:

	
	Chapter 8 (Short-Term Climate Prediction) in
Van den Dool, Huug. Empirical methods in short-term climate
prediction. Oxford University Press, 2007.
















          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.compute_uninitialized


	
HindcastEnsemble.compute_uninitialized(refname=None, metric='pearson_r', comparison='e2r')

	Compares the uninitialized ensemble to a given reference.

This will automatically run the comparison against all shared variables
between the initialized ensemble and reference.


	Parameters

	
	refname (str) – Name of reference to compare to. If None, compare to all
references.


	metric (str, default 'pearson_r') – Metric to apply in the comparison.


	comparison (str, default 'e2r') – How to compare to the reference. (‘e2r’ for ensemble mean to
reference. ‘m2r’ for each individual member to reference)






	Returns

	Dataset of comparison results (if comparing to one reference),
or dictionary of Datasets with keys corresponding to reference
name.













          

      

      

    

  

    
      
          
            
  


climpred.classes.HindcastEnsemble.smooth


	
HindcastEnsemble.smooth(smooth_kws='goddard2013')

	Smooth all entries of PredictionEnsemble in the same manner to be
able to still calculate prediction skill afterwards.


	Parameters

	xobj (xarray object) – decadal prediction ensemble output.






	
smooth_kws

	Dictionary to specify the dims to
smooth compatible with spatial_smoothing_xesmf,
temporal_smoothing or spatial_smoothing_xrcoarsen.
Shortcut for Goddard et al. 2013 recommendations:
‘goddard2013’


	Type

	dict or str









Example:
>>> PredictionEnsemble.smooth(smooth_kws={‘time’: 2,


‘lat’: 5, ‘lon’: 4’})




>>> PredictionEnsemble.smooth(smooth_kws='goddard2013')













          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble


	
class climpred.classes.PerfectModelEnsemble(xobj)

	An object for “perfect model” climate prediction ensembles.

PerfectModelEnsemble is a sub-class of PredictionEnsemble. It tracks
the control run used to initialize the ensemble for easy computations,
bootstrapping, etc.

This object is built on xarray and thus requires the input object to
be an xarray Dataset or DataArray.


	
__init__(xobj)

	Create a PerfectModelEnsemble object by inputting output from the
control run in xarray format.


	Parameters

	xobj (xarray object) – decadal prediction ensemble output.






	
control

	Dictionary of control run associated with the initialized
ensemble.






	
uninitialized

	Dictionary of uninitialized run that is
bootstrapped from the initialized run.









Methods







	__init__(xobj)

	Create a PerfectModelEnsemble object by inputting output from the control run in xarray format.



	add_control(xobj)

	Add the control run that initialized the climate prediction ensemble.



	bootstrap([metric, comparison, sig, …])

	Bootstrap ensemble simulations with replacement.



	compute_metric([metric, comparison])

	Compares the initialized ensemble to the control run.



	compute_persistence([metric])

	Compute a simple persistence forecast for the control run.



	compute_uninitialized([metric, comparison])

	Compares the bootstrapped uninitialized run to the control run.



	generate_uninitialized()

	Generate an uninitialized ensemble by bootstrapping the initialized prediction ensemble.



	get_control()

	Returns the control as an xarray dataset.



	get_initialized()

	Returns the xarray dataset for the initialized ensemble.



	get_uninitialized()

	Returns the xarray dataset for the uninitialized ensemble.



	smooth([smooth_kws])

	Smooth all entries of PredictionEnsemble in the same manner to be able to still calculate prediction skill afterwards.














          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.__init__


	
PerfectModelEnsemble.__init__(xobj)

	Create a PerfectModelEnsemble object by inputting output from the
control run in xarray format.


	Parameters

	xobj (xarray object) – decadal prediction ensemble output.






	
control

	Dictionary of control run associated with the initialized
ensemble.






	
climpred.classes.uninitialized

	Dictionary of uninitialized run that is
bootstrapped from the initialized run.













          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.add_control


	
PerfectModelEnsemble.add_control(xobj)

	Add the control run that initialized the climate prediction
ensemble.


	Parameters

	xobj (xarray object) – Dataset/DataArray of the control run.













          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.get_initialized


	
PerfectModelEnsemble.get_initialized()

	Returns the xarray dataset for the initialized ensemble.









          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.get_control


	
PerfectModelEnsemble.get_control()

	Returns the control as an xarray dataset.









          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.get_uninitialized


	
PerfectModelEnsemble.get_uninitialized()

	Returns the xarray dataset for the uninitialized ensemble.









          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.bootstrap


	
PerfectModelEnsemble.bootstrap(metric='pearson_r', comparison='m2e', sig=95, bootstrap=500, pers_sig=None)

	Bootstrap ensemble simulations with replacement.


	Parameters

	
	metric (str, default 'pearson_r') – Metric to apply for bootstrapping.


	comparison (str, default 'm2e') – Comparison style for bootstrapping.


	sig (int, default 95) – Significance level for uninitialized and initialized
comparison.


	bootstrap (int, default 500) – Number of resampling iterations for
bootstrapping with replacement.


	pers_sig (int, default None) – If not None, the separate significance level for persistence.






	Returns

	Dictionary of Datasets for each variable applied to with the
following variables:



	init_ci: confidence levels of init_skill.


	uninit_ci: confidence levels of uninit_skill.


	pers_ci: confidence levels of pers_skill.


	
	p_uninit_over_init: p value of the hypothesis that the

	difference of skill between the initialized and
uninitialized simulations is smaller or equal to zero
based on bootstrapping with replacement.







	
	p_pers_over_init: p value of the hypothesis that the

	difference of skill between the initialized and persistence
simulations is smaller or equal to zero based on
bootstrapping with replacement.



















	Reference:

	
	Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P.
Gonzalez, V. Kharin, et al. “A Verification Framework for
Interannual-to-Decadal Predictions Experiments.” Climate
Dynamics 40, no. 1–2 (January 1, 2013): 245–72.
https://doi.org/10/f4jjvf.
















          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.compute_metric


	
PerfectModelEnsemble.compute_metric(metric='pearson_r', comparison='m2m')

	Compares the initialized ensemble to the control run.


	Parameters

	
	metric (str, default 'pearson_r') – Metric to apply in the comparison.


	comparison (str, default 'm2m') – How to compare the climate prediction ensemble to the control.






	Returns

	Result of the comparison as a Dataset.













          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.compute_persistence


	
PerfectModelEnsemble.compute_persistence(metric='pearson_r')

	Compute a simple persistence forecast for the control run.


	Parameters

	metric (str, default 'pearson_r') – Metric to apply to the persistence forecast.



	Returns

	Dataset of persistence forecast results (if refname is declared),
or dictionary of Datasets with keys corresponding to reference
name.






	Reference:

	
	Chapter 8 (Short-Term Climate Prediction) in
Van den Dool, Huug. Empirical methods in short-term climate
prediction. Oxford University Press, 2007.
















          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.compute_uninitialized


	
PerfectModelEnsemble.compute_uninitialized(metric='pearson_r', comparison='m2e')

	Compares the bootstrapped uninitialized run to the control run.


	Parameters

	
	metric (str, default 'pearson_r') – Metric to apply in the comparison.


	comparison (str, default 'm2m') – How to compare to the control run.


	running (int, default None) – Size of the running window for variance smoothing.






	Returns

	Result of the comparison as a Dataset.













          

      

      

    

  

    
      
          
            
  


climpred.classes.PerfectModelEnsemble.generate_uninitialized


	
PerfectModelEnsemble.generate_uninitialized()

	Generate an uninitialized ensemble by bootstrapping the
initialized prediction ensemble.


	Returns

	Bootstrapped (uninitialized) ensemble as a Dataset.













          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.bootstrap_compute


	
climpred.bootstrap.bootstrap_compute(hind, reference, hist=None, metric='pearson_r', comparison='m2e', dim='init', sig=95, bootstrap=500, pers_sig=None, compute=<function compute_hindcast>, resample_uninit=<function bootstrap_uninitialized_ensemble>, **metric_kwargs)

	Bootstrap compute with replacement.


	Parameters

	
	hind (xr.Dataset) – prediction ensemble.


	reference (xr.Dataset) – reference simulation.


	hist (xr.Dataset) – historical/uninitialized simulation.


	metric (str) – metric. Defaults to ‘pearson_r’.


	comparison (str) – comparison. Defaults to ‘m2e’.


	dim (str or list) – dimension to apply metric over. default: ‘init’


	sig (int) – Significance level for uninitialized and
initialized skill. Defaults to 95.


	pers_sig (int) – Significance level for persistence skill confidence levels.
Defaults to sig.


	bootstrap (int) – number of resampling iterations (bootstrap
with replacement). Defaults to 500.


	compute (func) – function to compute skill.
Choose from
[climpred.prediction.compute_perfect_model(),


climpred.prediction.compute_hindcast()].







	resample_uninit (func) – function to create an uninitialized ensemble
from a control simulation or uninitialized large
ensemble. Choose from:
[bootstrap_uninitialized_ensemble(),


bootstrap_uninit_pm_ensemble_from_control()].







	metric_kwargs (**) – additional keywords to be passed to metric
(see the arguments required for a given metric in Metrics).






	Returns

	
	(xr.Dataset): bootstrapped results

	
	init_ci (xr.Dataset): confidence levels of init_skill


	uninit_ci (xr.Dataset): confidence levels of uninit_skill


	
	p_uninit_over_init (xr.Dataset): p value of the hypothesis

	that the difference of
skill between the
initialized and uninitialized
simulations is smaller or
equal to zero based on
bootstrapping with
replacement.
Defaults to None.







	pers_ci (xr.Dataset): confidence levels of pers_skill


	
	p_pers_over_init (xr.Dataset): p value of the hypothesis

	that the difference of
skill between the
initialized and persistence
simulations is smaller or
equal to zero based on
bootstrapping with
replacement.
Defaults to None.

















	Return type

	results






	Reference:

	
	Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P.
Gonzalez, V. Kharin, et al. “A Verification Framework for
Interannual-to-Decadal Predictions Experiments.” Climate
Dynamics 40, no. 1–2 (January 1, 2013): 245–72.
https://doi.org/10/f4jjvf.









See also


	climpred.bootstrap.bootstrap_hindcast


	climpred.bootstrap.bootstrap_perfect_model














          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.bootstrap_hindcast


	
climpred.bootstrap.bootstrap_hindcast(hind, hist, reference, metric='pearson_r', comparison='e2r', dim='init', sig=95, bootstrap=500, pers_sig=None, **metric_kwargs)

	
	Bootstrap compute with replacement. Wrapper of

	py:func:bootstrap_compute for hindcasts.






	Parameters

	
	hind (xr.Dataset) – prediction ensemble.


	reference (xr.Dataset) – reference simulation.


	hist (xr.Dataset) – historical/uninitialized simulation.


	metric (str) – metric. Defaults to ‘pearson_r’.


	comparison (str) – comparison. Defaults to ‘e2r’.


	dim (str) – dimension to apply metric over. default: ‘init’


	sig (int) – Significance level for uninitialized and
initialized skill. Defaults to 95.


	pers_sig (int) – Significance level for persistence skill confidence levels.
Defaults to sig.


	bootstrap (int) – number of resampling iterations (bootstrap
with replacement). Defaults to 500.


	metric_kwargs (**) – additional keywords to be passed to metric
(see the arguments required for a given metric in Metrics).






	Returns

	
	(xr.Dataset): bootstrapped results

	
	init_ci (xr.Dataset): confidence levels of init_skill


	uninit_ci (xr.Dataset): confidence levels of uninit_skill


	
	p_uninit_over_init (xr.Dataset): p value of the hypothesis

	that the difference of
skill between the
initialized and uninitialized
simulations is smaller or
equal to zero based on
bootstrapping with
replacement.
Defaults to None.







	pers_ci (xr.Dataset): confidence levels of pers_skill


	
	p_pers_over_init (xr.Dataset): p value of the hypothesis

	that the difference of
skill between the
initialized and persistence
simulations is smaller or
equal to zero based on
bootstrapping with
replacement.
Defaults to None.

















	Return type

	results






	Reference:

	
	Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P.
Gonzalez, V. Kharin, et al. “A Verification Framework for
Interannual-to-Decadal Predictions Experiments.” Climate
Dynamics 40, no. 1–2 (January 1, 2013): 245–72.
https://doi.org/10/f4jjvf.









See also


	climpred.bootstrap.bootstrap_compute


	climpred.prediction.compute_hindcast














          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.bootstrap_perfect_model


	
climpred.bootstrap.bootstrap_perfect_model(ds, control, metric='pearson_r', comparison='m2e', dim=None, sig=95, bootstrap=500, pers_sig=None, **metric_kwargs)

	
	Bootstrap compute with replacement. Wrapper of

	py:func:bootstrap_compute for perfect-model framework.






	Parameters

	
	hind (xr.Dataset) – prediction ensemble.


	reference (xr.Dataset) – reference simulation.


	hist (xr.Dataset) – historical/uninitialized simulation.


	metric (str) – metric. Defaults to ‘pearson_r’.


	comparison (str) – comparison. Defaults to ‘m2e’.


	dim (str) – dimension to apply metric over. default: [‘init’, ‘member’]


	sig (int) – Significance level for uninitialized and
initialized skill. Defaults to 95.


	pers_sig (int) – Significance level for persistence skill confidence levels.
Defaults to sig.


	bootstrap (int) – number of resampling iterations (bootstrap
with replacement). Defaults to 500.


	metric_kwargs (**) – additional keywords to be passed to metric
(see the arguments required for a given metric in Metrics).






	Returns

	
	(xr.Dataset): bootstrapped results

	
	init_ci (xr.Dataset): confidence levels of init_skill


	uninit_ci (xr.Dataset): confidence levels of uninit_skill


	
	p_uninit_over_init (xr.Dataset): p value of the hypothesis

	that the difference of
skill between the
initialized and uninitialized
simulations is smaller or
equal to zero based on
bootstrapping with
replacement.
Defaults to None.







	pers_ci (xr.Dataset): confidence levels of pers_skill


	
	p_pers_over_init (xr.Dataset): p value of the hypothesis

	that the difference of
skill between the
initialized and persistence
simulations is smaller or
equal to zero based on
bootstrapping with
replacement.
Defaults to None.

















	Return type

	results






	Reference:

	
	Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P.
Gonzalez, V. Kharin, et al. “A Verification Framework for
Interannual-to-Decadal Predictions Experiments.” Climate
Dynamics 40, no. 1–2 (January 1, 2013): 245–72.
https://doi.org/10/f4jjvf.









See also


	climpred.bootstrap.bootstrap_compute


	climpred.prediction.compute_perfect_model














          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control


	
climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control(ds, control)

	Create a pseudo-ensemble from control run.


Note

Needed for block bootstrapping confidence intervals of a metric in perfect
model framework. Takes randomly segments of length of ensemble dataset from
control and rearranges them into ensemble and member dimensions.




	Parameters

	
	ds (xarray object) – ensemble simulation.


	control (xarray object) – control simulation.






	Returns

	pseudo-ensemble generated from control run.



	Return type

	ds_e (xarray object)













          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.bootstrap_uninitialized_ensemble


	
climpred.bootstrap.bootstrap_uninitialized_ensemble(hind, hist)

	Resample uninitialized hindcast from historical members.


Note

Needed for bootstrapping confidence intervals and p_values of a metric in
the hindcast framework. Takes hind.lead.size timesteps from historical at
same forcing and rearranges them into ensemble and member dimensions.




	Parameters

	
	hind (xarray object) – hindcast.


	hist (xarray object) – historical uninitialized.






	Returns

	uninitialize hindcast with hind.coords.



	Return type

	uninit_hind (xarray object)













          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.dpp_threshold


	
climpred.bootstrap.dpp_threshold(control, sig=95, bootstrap=500, dim='time', **dpp_kwargs)

	Calc DPP significance levels from re-sampled dataset.


	Reference:

	
	Feng, X., T. DelSole, and P. Houser. “Bootstrap Estimated Seasonal
Potential Predictability of Global Temperature and Precipitation.”
Geophysical Research Letters 38, no. 7 (2011).
https://doi.org/10/ft272w.









See also


	climpred.bootstrap._bootstrap_func


	climpred.stats.dpp














          

      

      

    

  

    
      
          
            
  


climpred.bootstrap.varweighted_mean_period_threshold


	
climpred.bootstrap.varweighted_mean_period_threshold(control, sig=95, bootstrap=500, time_dim='time')

	Calc the variance-weighted mean period significance levels from re-sampled dataset.


See also


	climpred.bootstrap._bootstrap_func


	climpred.stats.varweighted_mean_period














          

      

      

    

  

    
      
          
            
  


climpred.prediction.compute_hindcast


	
climpred.prediction.compute_hindcast(hind, reference, metric='pearson_r', comparison='e2r', dim='init', max_dof=False, add_attrs=True, **metric_kwargs)

	Compute a predictability skill score against a reference


	Parameters

	
	hind (xarray object) – Expected to follow package conventions:
* init : dim of initialization dates
* lead : dim of lead time from those initializations
Additional dims can be member, lat, lon, depth, …


	reference (xarray object) – reference output/data over same time period.


	metric (str) – Metric used in comparing the decadal prediction ensemble with the
reference
(see climpred.utils.get_metric_class() and Metrics).


	comparison (str) – How to compare the decadal prediction ensemble to the reference:



	e2r : ensemble mean to reference (Default)


	m2r : each member to the reference




(see Comparisons)







	dim (str or list) – dimension to apply metric over. default: ‘init’


	max_dof (bool) – If True, maximize the degrees of freedom by slicing hind and reference
to a common time frame at each lead.

If False (default), then slice to a common time frame prior to computing
metric. This philosophy follows the thought that each lead should be based
on the same set of initializations.




	add_attrs (bool) – write climpred compute args to attrs. default: True


	metric_kwargs (**) – additional keywords to be passed to metric
(see the arguments required for a given metric in Metrics).






	Returns

	Predictability with main dimension lag without dimension dim



	Return type

	skill (xarray object)













          

      

      

    

  

    
      
          
            
  


climpred.prediction.compute_perfect_model


	
climpred.prediction.compute_perfect_model(ds, control, metric='pearson_r', comparison='m2e', dim=None, add_attrs=True, **metric_kwargs)

	Compute a predictability skill score for a perfect-model framework
simulation dataset.


	Parameters

	
	ds (xarray object) – ensemble with dims lead, init, member.


	control (xarray object) – control with dimension time.


	metric (str) – metric name, see
climpred.utils.get_metric_class() and (see Metrics).


	comparison (str) – comparison name defines what to take as forecast
and verification (see
climpred.utils.get_comparison_class() and Comparisons).


	dim (str or list) – dimension to apply metric over. default: [‘member’, ‘init’]


	add_attrs (bool) – write climpred compute args to attrs. default: True


	metric_kwargs (**) – additional keywords to be passed to metric.
(see the arguments required for a given metric in metrics.py)






	Returns

	
	skill score with dimensions as input ds

	without dim.









	Return type

	skill (xarray object)













          

      

      

    

  

    
      
          
            
  


climpred.prediction.compute_persistence


	
climpred.prediction.compute_persistence(hind, reference, metric='pearson_r', max_dof=False, **metric_kwargs)

	Computes the skill of a persistence forecast from a simulation.


	Parameters

	
	hind (xarray object) – The initialized ensemble.


	reference (xarray object) – The reference time series.


	metric (str) – Metric name to apply at each lag for the persistence
computation. Default: ‘pearson_r’


	max_dof (bool) – If True, maximize the degrees of freedom by slicing hind and reference
to a common time frame at each lead.

If False (default), then slice to a common time frame prior to computing
metric. This philosophy follows the thought that each lead should be based
on the same set of initializations.




	metric_kwargs (**) – additional keywords to be passed to metric
(see the arguments required for a given metric in Metrics).






	Returns

	Results of persistence forecast with the input metric
applied.



	Return type

	pers (xarray object)






	Reference:

	
	Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug.
Empirical methods in short-term climate prediction.
Oxford University Press, 2007.
















          

      

      

    

  

    
      
          
            
  


climpred.prediction.compute_uninitialized


	
climpred.prediction.compute_uninitialized(uninit, reference, metric='pearson_r', comparison='e2r', dim='time', add_attrs=True, **metric_kwargs)

	Compute a predictability score between an uninitialized ensemble and a reference.


Note

Based on Decadal Prediction protocol, this should only be computed for the
first lag and then projected out to any further lags being analyzed.




	Parameters

	
	uninit (xarray object) – uninitialized ensemble.


	reference (xarray object) – reference output/data over same time period.


	metric (str) – Metric used in comparing the uninitialized ensemble with the reference.


	comparison (str) – 
	How to compare the uninitialized ensemble to the reference:

	
	e2r : ensemble mean to reference (Default)


	m2r : each member to the reference











	add_attrs (bool) – write climpred compute args to attrs. default: True


	metric_kwargs (**) – additional keywords to be passed to metric






	Returns

	Results from comparison at the first lag.



	Return type

	u (xarray object)













          

      

      

    

  

    
      
          
            
  


climpred.metrics.Metric


	
class climpred.metrics.Metric(name, function, positive, probabilistic, unit_power, long_name=None, aliases=None, minimum=None, maximum=None, perfect=None)

	Master class for all metrics.


	
__init__(name, function, positive, probabilistic, unit_power, long_name=None, aliases=None, minimum=None, maximum=None, perfect=None)

	Metric initialization.


	Parameters

	
	name (str) – name of metric.


	function (function) – metric function.


	positive (bool) – Is metric positively oriented? Higher metric
values means higher skill.


	probabilistic (bool) – Is metric probabilistic? False means
deterministic.


	unit_power (float, int) – Power of the unit of skill based on unit
of input, e.g. input unit [m]: skill unit [(m)**unit_power]


	long_name (str, optional) – long_name of metric. Defaults to None.


	aliases (list of str, optional) – Allowed aliases for this metric.
Defaults to None.


	min (float, optional) – Minimum skill for metric. Defaults to None.


	max (float, optional) – Maxmimum skill for metric. Defaults to None.


	perfect (float, optional) – Perfect skill for metric. Defaults to None.






	Returns

	metric class Metric.



	Return type

	Metric









Methods







	__init__(name, function, positive, …[, …])

	Metric initialization.














          

      

      

    

  

    
      
          
            
  


climpred.metrics._get_norm_factor


	
climpred.metrics._get_norm_factor(comparison)

	Get normalization factor for normalizing distance metrics.

A distance metric is normalized by the standard deviation or variance
of a reference/control simulation. The goal of a normalized distance
metric is to get a constant and comparable value of typically 1 (or 0 for
metrics defined as 1 - metric), when the metric saturates and the predictability
horizon is reached.

To directly compare skill between different comparisons used, a factor is
added in the normalized metric formula, see Seferian et al. 2018.
For example, NRMSE gets smaller in comparison m2e than m2m by design,
because the ensemble mean is always closer to individual ensemble members
than ensemble members to each other.



Note

This is used for NMSE, NRMSE, MSSS, NMAE.







	Parameters

	comparison (class) – comparison class.



	Returns

	normalization factor.



	Return type

	fac (int)



	Raises

	KeyError – if comparison is not matching.





Example

>>> # check skill saturation value of roughly 1 for different comparisons
>>> metric = 'nrmse'
>>> for c in ['m2m', 'm2e', 'm2c', 'e2c']:
        s = compute_perfect_model(ds, control, metric=metric, comparison=c)
        s.plot(label=' '.join([metric,c]))
>>> plt.legend()






	Reference:

	
	Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing
the Decadal Predictability of Land and Ocean Carbon Uptake.”
Geophysical Research Letters, March 15, 2018. https://doi.org/10/gdb424.
















          

      

      

    

  

    
      
          
            
  


climpred.comparisons.Comparison


	
class climpred.comparisons.Comparison(name, function, hindcast, probabilistic, long_name=None)

	Master class for all comparisons.


	
__init__(name, function, hindcast, probabilistic, long_name=None)

	Comparison initialization.


	Parameters

	
	name (str) – name of comparison.


	function (function) – comparison function.


	hindcast (bool) – Can comparison be used in compute_hindcast?
False means compute_perfect_model


	probabilistic (bool) – Can this comparison be used for probabilistic
metrics also? Probabilistic metrics require multiple forecasts.
False means that comparison is only deterministic.
True means that comparison can be used both deterministic and
probabilistic.


	long_name (str, optional) – longname of comparison. Defaults to None.






	Returns

	comparison class Comparison.



	Return type

	comparison









Methods







	__init__(name, function, hindcast, probabilistic)

	Comparison initialization.














          

      

      

    

  

    
      
          
            
  


climpred.stats.autocorr


	
climpred.stats.autocorr(ds, lag=1, dim='time', return_p=False)

	Calculate the lagged correlation of time series.


	Parameters

	
	ds (xarray object) – Time series or grid of time series.


	lag (optional int) – Number of time steps to lag correlate to.


	dim (optional str) – Name of dimension to autocorrelate over.


	return_p (optional bool) – If True, return correlation coefficients
and p values.






	Returns

	Pearson correlation coefficients.

If return_p, also returns their associated p values.















          

      

      

    

  

    
      
          
            
  


climpred.stats.corr


	
climpred.stats.corr(x, y, dim='time', lag=0, return_p=False)

	Computes the Pearson product-moment coefficient of linear correlation.


Note

This version calculates the effective degrees of freedom, accounting
for autocorrelation within each time series that could fluff the
significance of the correlation.




	Parameters

	
	x (xarray object) – Independent variable time series or grid of time
series.


	y (xarray object) – Dependent variable time series or grid of time
series


	dim (optional str) – Correlation dimension


	lag (optional int) – Lag to apply to correlaton, with x predicting y.


	return_p (optional bool) – If True, return correlation coefficients
as well as p values.






	Returns

	Pearson correlation coefficients
If return_p True, associated p values.





References


	Wilks, Daniel S. Statistical methods in the atmospheric sciences.
Vol. 100. Academic press, 2011.


	Lovenduski, Nicole S., and Nicolas Gruber. “Impact of the Southern
Annular Mode on Southern Ocean circulation and biology.” Geophysical
Research Letters 32.11 (2005).












          

      

      

    

  

    
      
          
            
  


climpred.stats.decorrelation_time


	
climpred.stats.decorrelation_time(da, r=20, dim='time')

	Calculate the decorrelaton time of a time series.


[image: \tau_{d} = 1 + 2 * \sum_{k=1}^{r}(\alpha_{k})^{k}]



	Parameters

	
	da (xarray object) – Time series.


	r (optional int) – Number of iterations to run the above formula.


	dim (optional str) – Time dimension for xarray object.






	Returns

	Decorrelation time of time series.






	Reference:

	
	Storch, H. v, and Francis W. Zwiers. Statistical Analysis in Climate
Research. Cambridge ; New York: Cambridge University Press, 1999.,
p.373
















          

      

      

    

  

    
      
          
            
  


climpred.stats.dpp


	
climpred.stats.dpp(ds, dim='time', m=10, chunk=True)

	Calculates the Diagnostic Potential Predictability (dpp)


[image: DPP_{\mathrm{unbiased}}(m) = \frac{\sigma^{2}_{m} - \frac{1}{m}\cdot\sigma^{2}}{\sigma^{2}}]



Note

Resplandy et al. 2015 and Seferian et al. 2018 calculate unbiased DPP
in a slightly different way: chunk=False.




	Parameters

	
	ds (xr.DataArray) – control simulation with time dimension as years.


	dim (str) – dimension to apply DPP on. Default: time.


	m (optional int) – separation time scale in years between predictable
low-freq component and high-freq noise.


	chunk (optional boolean) – Whether chunking is applied. Default: True.
If False, then uses Resplandy 2015 / Seferian 2018 method.






	Returns

	ds without time dimension.



	Return type

	dpp (xr.DataArray)





References


	Boer, G. J. “Long Time-Scale Potential Predictability in an Ensemble of
Coupled Climate Models.” Climate Dynamics 23, no. 1 (August 1, 2004):
29–44. https://doi.org/10/csjjbh.


	Resplandy, L., R. Séférian, and L. Bopp. “Natural Variability of CO2 and
O2 Fluxes: What Can We Learn from Centuries-Long Climate Models
Simulations?” Journal of Geophysical Research: Oceans 120, no. 1
(January 2015): 384–404. https://doi.org/10/f63c3h.


	Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the
Decadal Predictability of Land and Ocean Carbon Uptake.” Geophysical
Research Letters, March 15, 2018. https://doi.org/10/gdb424.












          

      

      

    

  

    
      
          
            
  


climpred.stats.rm_poly


	
climpred.stats.rm_poly(ds, order, dim='time')

	Returns xarray object with nth-order fit removed.


Note

This automatically performs a linear interpolation across any NaNs in the time
series.




	Parameters

	
	ds (xarray object) – Time series to be detrended.


	order (int) – Order of polynomial fit to be removed.


	dim (optional str) – Dimension over which to remove the polynomial fit.






	Returns

	xarray object with polynomial fit removed.













          

      

      

    

  

    
      
          
            
  


climpred.stats.rm_trend


	
climpred.stats.rm_trend(da, dim='time')

	Remove linear trend from time series.


	Parameters

	
	ds (xarray object) – Time series to be detrended.


	dim (optional str) – Dimension over which to remove the linear trend.






	Returns

	xarray object with linear trend removed.













          

      

      

    

  

    
      
          
            
  


climpred.stats.varweighted_mean_period


	
climpred.stats.varweighted_mean_period(da, dim='time', **kwargs)

	Calculate the variance weighted mean period of time series based on
xrft.power_spectrum.


[image: P_{x} = \frac{\sum_k V(f_k,x)}{\sum_k f_k  \cdot V(f_k,x)}]



	Parameters

	
	da (xarray object) – input data including dim.


	dim (optional str) – Name of time dimension.


	**kwargs see xrft.power_spectrum (for) – 









	Reference:

	
	Branstator, Grant, and Haiyan Teng. “Two Limits of Initial-Value
Decadal Predictability in a CGCM.” Journal of Climate 23, no. 23
(August 27, 2010): 6292-6311. https://doi.org/10/bwq92h.








See also:
https://xrft.readthedocs.io/en/latest/api.html#xrft.xrft.power_spectrum









          

      

      

    

  

    
      
          
            
  


climpred.tutorial.load_dataset


	
climpred.tutorial.load_dataset(name=None, cache=True, cache_dir='~/.climpred_data', github_url='https://github.com/bradyrx/climpred-data', branch='master', extension=None, proxy_dict=None, **kws)

	Load example data or a mask from an online repository.


	Parameters

	
	name – (str, default None) Name of the netcdf file containing the
dataset, without the .nc extension. If None, this function
prints out the available datasets to import.


	cache_dir – (str, optional) The directory in which to search
for and cache the data.


	cache – (bool, optional) If True, cache data locally for use on later
calls.


	github_url – (str, optional) Github repository where the data is stored.


	branch – (str, optional) The git branch to download from.


	extension – (str, optional) Subfolder within the repository where the
data is stored.


	proxy_dict – (dict, optional) Dictionary with keys as either ‘http’ or
‘https’ and values as the proxy server. This is useful
if you are on a work computer behind a firewall and need
to use a proxy out to download data.


	kws – (dict, optional) Keywords passed to xarray.open_dataset






	Returns

	The desired xarray dataset.





Examples

>>> from climpred.tutorial import load_dataset()
>>> proxy_dict = {'http': '127.0.0.1'}
>>> ds = load_dataset('FOSI-SST', cache=False, proxy_dict=proxy_dict)













          

      

      

    

  

    
      
          
            
  


What’s New


climpred v1.2.1 (2020-01-07)


Depreciated


	mad no longer a keyword for the median absolute error metric. Users should now
use median_absolute_error, which is identical to changes in xskillscore
version 0.0.10. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	pacc no longer a keyword for the p value associated with the Pearson
product-moment correlation, since it is used by the correlation coefficient.
(GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	msss no longer a keyword for the Murphy’s MSSS, since it is reserved for the
standard MSSS. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]







New Features


	Metrics pearson_r_eff_p_value and spearman_r_eff_p_value account for
autocorrelation in computing p values. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	Metric effective_sample_size computes number of independent samples between two
time series being correlated. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	Added keywords for metrics: (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]



	'pval' for pearson_r_p_value


	['n_eff', 'eff_n'] for effective_sample_size


	['p_pval_eff', 'pvalue_eff', 'pval_eff'] for pearson_r_eff_p_value


	['spvalue', 'spval'] for spearman_r_p_value


	['s_pval_eff', 'spvalue_eff', 'spval_eff'] for spearman_r_eff_p_value


	'nev' for nmse














Bug Fixes


	climpred now requires xarray version 0.14.1 so that the drop_vars()
keyword used in our package does not throw an error. (GH#276 [https://github.com/bradyrx/climpred/pull/276]) Riley X. Brady [https://github.com/bradyrx]


	Update to xskillscore version 0.0.10 to fix errors in weighted metrics with
pairwise NaNs. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]







Internals/Minor Fixes


	doc8 added to pre-commit to have consistent formatting on .rst files.
(GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	Remove proper attribute on Metric class since it isn’t used anywhere.
(GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	Add testing for effective p values. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	Add testing for whether metric aliases are repeated/overwrite each other.
(GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	ppp changed to msess, but keywords allow for ppp and msss still.
(GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]







Documentation


	Expansion of metrics documentation with much more
detail on how metrics are computed, their keywords, references, min/max/perfect
scores, etc. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]


	Update terminology page with more information on metrics
terminology. (GH#283 [https://github.com/bradyrx/climpred/pull/283]) Riley X. Brady [https://github.com/bradyrx]









climpred v1.2.0 (2019-12-17)


Depreciated


	Abbreviation pval depreciated. Use p_pval for pearson_r_p_value instead.
(GH#264 [https://github.com/bradyrx/climpred/pull/264]) Aaron Spring [https://github.com/aaronspring].







New Features


	Users can now pass a custom metric or comparison to compute functions.
(GH#268 [https://github.com/bradyrx/climpred/pull/268]) Aaron Spring [https://github.com/aaronspring].



	See user-defined-metrics and
user-defined-comparisons.









	New deterministic metrics (see metrics). (GH#264 [https://github.com/bradyrx/climpred/pull/264])
Aaron Spring [https://github.com/aaronspring].



	Spearman ranked correlation (spearman_r)


	Spearman ranked correlation p-value (spearman_r_p_value)


	Mean Absolute Deviation (mad)


	Mean Absolute Percent Error (mape)


	Symmetric Mean Absolute Percent Error (smape)












	Users can now apply arbitrary xarray methods to
HindcastEnsemble and
PerfectModelEnsemble. (GH#243 [https://github.com/bradyrx/climpred/pull/243]) Riley X. Brady [https://github.com/bradyrx].



	See the
Prediction Ensemble objects demo page.









	Add “getter” methods to HindcastEnsemble and
PerfectModelEnsemble to retrieve xarray datasets
from the objects. (GH#243 [https://github.com/bradyrx/climpred/pull/243]) Riley X. Brady [https://github.com/bradyrx].


>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')
>>> ref = climpred.tutorial.load_dataset('ERSST')
>>> hindcast = climpred.HindcastEnsemble(hind)
>>> hindcast = hindcast.add_reference(ref, 'ERSST')
>>> print(hindcast)
<climpred.HindcastEnsemble>
Initialized Ensemble:
    SST      (init, lead, member) float64 ...
ERSST:
    SST      (time) float32 ...
Uninitialized:
    None
>>> print(hindcast.get_initialized())
<xarray.Dataset>
Dimensions:  (init: 64, lead: 10, member: 10)
Coordinates:
* lead     (lead) int32 1 2 3 4 5 6 7 8 9 10
* member   (member) int32 1 2 3 4 5 6 7 8 9 10
* init     (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0
Data variables:
    SST      (init, lead, member) float64 ...
>>> print(hindcast.get_reference('ERSST'))
<xarray.Dataset>
Dimensions:  (time: 61)
Coordinates:
* time     (time) int64 1955 1956 1957 1958 1959 ... 2011 2012 2013 2014 2015
Data variables:
    SST      (time) float32 ...










	metric_kwargs can be passed to Metric.
(GH#264 [https://github.com/bradyrx/climpred/pull/264]) Aaron Spring [https://github.com/aaronspring].



	See metric_kwargs under metrics.














Bug Fixes


	compute_metric() doesn’t drop coordinates
from the initialized hindcast ensemble anymore. (GH#258 [https://github.com/bradyrx/climpred/pull/258]) Aaron Spring [https://github.com/aaronspring].


	Metric uacc does not crash when ppp negative anymore. (GH#264 [https://github.com/bradyrx/climpred/pull/264])
Aaron Spring [https://github.com/aaronspring].


	Update xskillscore to version 0.0.9 to fix all-NaN issue with pearson_r and
pearson_r_p_value when there’s missing data. (GH#269 [https://github.com/bradyrx/climpred/pull/269]) Riley X. Brady [https://github.com/bradyrx].







Internals/Minor Fixes


	Rewrote varweighted_mean_period() based on xrft.
Changed time_dim to dim. Function no longer drops coordinates. (GH#258 [https://github.com/bradyrx/climpred/pull/258])
Aaron Spring [https://github.com/aaronspring]


	Add dim='time' in dpp(). (GH#258 [https://github.com/bradyrx/climpred/pull/258]) Aaron Spring [https://github.com/aaronspring]


	Comparisons m2m, m2e rewritten to not stack dims into supervector because
this is now done in xskillscore. (GH#264 [https://github.com/bradyrx/climpred/pull/264]) Aaron Spring [https://github.com/aaronspring]


	Add tqdm progress bar to bootstrap_compute().
(GH#244 [https://github.com/bradyrx/climpred/pull/244]) Aaron Spring [https://github.com/aaronspring]


	Remove inplace behavior for HindcastEnsemble and
PerfectModelEnsemble. (GH#243 [https://github.com/bradyrx/climpred/pull/243]) Riley X. Brady [https://github.com/bradyrx]



	See demo page on prediction ensemble objects









	Added tests for chunking with dask. (GH#258 [https://github.com/bradyrx/climpred/pull/258]) Aaron Spring [https://github.com/aaronspring]


	Fix test issues with esmpy 8.0 by forcing esmpy 7.1 (GH#269 [https://github.com/bradyrx/climpred/pull/269]). Riley X. Brady [https://github.com/bradyrx]


	Rewrote metrics and comparisons as classes to accomodate custom metrics and
comparisons. (GH#268 [https://github.com/bradyrx/climpred/pull/268]) Aaron Spring [https://github.com/aaronspring]



	See user-defined-metrics and
user-defined-comparisons.














Documentation


	Add examples notebook for
temporal and spatial smoothing. (GH#244 [https://github.com/bradyrx/climpred/pull/244])
Aaron Spring [https://github.com/aaronspring]


	Add documentation for computing a metric over a
specified dimension.
(GH#244 [https://github.com/bradyrx/climpred/pull/244]) Aaron Spring [https://github.com/aaronspring]


	Update API to be more organized with individual function/class pages.
(GH#243 [https://github.com/bradyrx/climpred/pull/243]) Riley X. Brady [https://github.com/bradyrx].


	Add page describing the
HindcastEnsemble and
PerfectModelEnsemble objects more clearly.
(GH#243 [https://github.com/bradyrx/climpred/pull/243]) Riley X. Brady [https://github.com/bradyrx]


	Add page for publications and
helpful links. (GH#270 [https://github.com/bradyrx/climpred/pull/270]) Riley X. Brady [https://github.com/bradyrx].









climpred v1.1.0 (2019-09-23)


Features


	Write information about skill computation to netcdf attributes(GH#213 [https://github.com/bradyrx/climpred/pull/213])
Aaron Spring [https://github.com/aaronspring]


	Temporal and spatial smoothing module (GH#224 [https://github.com/bradyrx/climpred/pull/224]) Aaron Spring [https://github.com/aaronspring]


	Add metrics brier_score, threshold_brier_score and crpss_es (GH#232 [https://github.com/bradyrx/climpred/pull/232])
Aaron Spring [https://github.com/aaronspring]


	Allow compute_hindcast and compute_perfect_model to specify which dimension dim
to calculate metric over (GH#232 [https://github.com/bradyrx/climpred/pull/232]) Aaron Spring [https://github.com/aaronspring]







Bug Fixes


	Correct implementation of probabilistic metrics from xskillscore in
compute_perfect_model, bootstrap_perfect_model, compute_hindcast and
bootstrap_hindcast, now requires xskillscore>=0.05 (GH#232 [https://github.com/bradyrx/climpred/pull/232]) Aaron Spring [https://github.com/aaronspring]







Internals/Minor Fixes


	Rename .stats.DPP to dpp (GH#232 [https://github.com/bradyrx/climpred/pull/232]) Aaron Spring [https://github.com/aaronspring]


	Add matplotlib as a main dependency so that a direct pip installation works
(GH#211 [https://github.com/bradyrx/climpred/pull/211]) Riley X. Brady [https://github.com/bradyrx].


	climpred is now installable from conda-forge (GH#212 [https://github.com/bradyrx/climpred/pull/212]) Riley X. Brady [https://github.com/bradyrx].


	Fix erroneous descriptions of sample datasets (GH#226 [https://github.com/bradyrx/climpred/pull/226]) Riley X. Brady [https://github.com/bradyrx].


	Benchmarking time and peak memory of compute functions with asv (GH#231 [https://github.com/bradyrx/climpred/pull/231])
Aaron Spring [https://github.com/aaronspring]







Documentation


	Add scope of package to docs for clarity for users and developers. (GH#235 [https://github.com/bradyrx/climpred/pull/235])
Riley X. Brady [https://github.com/bradyrx].









climpred v1.0.1 (2019-07-04)


Bug Fixes


	Accomodate for lead-zero within the lead dimension (GH#196 [https://github.com/bradyrx/climpred/pull/196]) Riley X. Brady [https://github.com/bradyrx].


	Fix issue with adding uninitialized ensemble to HindcastEnsemble object
(GH#199 [https://github.com/bradyrx/climpred/pull/199]) Riley X. Brady [https://github.com/bradyrx].


	Allow max_dof keyword to be passed to compute_metric and
compute_persistence for HindcastEnsemble (GH#199 [https://github.com/bradyrx/climpred/pull/199]) Riley X. Brady [https://github.com/bradyrx].







Internals/Minor Fixes


	Force xskillscore version 0.0.4 or higher to avoid ImportError
(GH#204 [https://github.com/bradyrx/climpred/pull/204]) Riley X. Brady [https://github.com/bradyrx].


	Change max_dfs keyword to max_dof (GH#199 [https://github.com/bradyrx/climpred/pull/199]) Riley X. Brady [https://github.com/bradyrx].


	Add testing for HindcastEnsemble and PerfectModelEnsemble (GH#199 [https://github.com/bradyrx/climpred/pull/199])
Riley X. Brady [https://github.com/bradyrx]









climpred v1.0.0 (2019-07-03)

climpred v1.0.0 represents the first stable release of the package. It includes
HindcastEnsemble and PerfectModelEnsemble objects to perform analysis with.
It offers a suite of deterministic and probabilistic metrics that are optimized to be
run on single time series or grids of data (e.g., lat, lon, and depth). Currently,
climpred only supports annual forecasts.


Features


	Bootstrap prediction skill based on resampling with replacement consistently in
ReferenceEnsemble and PerfectModelEnsemble. (GH#128 [https://github.com/bradyrx/climpred/pull/128]) Aaron Spring [https://github.com/aaronspring]


	Consistent bootstrap function for climpred.stats functions via bootstrap_func
wrapper. (GH#167 [https://github.com/bradyrx/climpred/pull/167]) Aaron Spring [https://github.com/aaronspring]


	many more metrics: _msss_murphy, _less and probabilistic _crps,
_crpss (GH#128 [https://github.com/bradyrx/climpred/pull/128]) Aaron Spring [https://github.com/aaronspring]







Bug Fixes


	compute_uninitialized now trims input data to the same time window.
(GH#193 [https://github.com/bradyrx/climpred/pull/193]) Riley X. Brady [https://github.com/bradyrx]


	rm_poly now properly interpolates/fills NaNs. (GH#192 [https://github.com/bradyrx/climpred/pull/192]) Riley X. Brady [https://github.com/bradyrx]







Internals/Minor Fixes


	The climpred version can be printed. (GH#195 [https://github.com/bradyrx/climpred/pull/195]) Riley X. Brady [https://github.com/bradyrx]


	Constants are made elegant and pushed to a separate module. (GH#184 [https://github.com/bradyrx/climpred/pull/184])
Andrew Huang [https://github.com/ahuang11]


	Checks are consolidated to their own module. (GH#173 [https://github.com/bradyrx/climpred/pull/173]) Andrew Huang [https://github.com/ahuang11]







Documentation


	Documentation built extensively in multiple PRs.









climpred v0.3 (2019-04-27)

climpred v0.3 really represents the entire development phase leading up to the
version 1 release. This was done in collaboration between Riley X. Brady [https://github.com/bradyrx],
Aaron Spring [https://github.com/aaronspring], and Andrew Huang [https://github.com/ahuang11]. Future releases will have less additions.


Features


	Introduces object-oriented system to climpred, with classes
ReferenceEnsemble and PerfectModelEnsemble. (GH#86 [https://github.com/bradyrx/climpred/pull/86]) Riley X. Brady [https://github.com/bradyrx]


	Expands bootstrapping module for perfect-module configurations. (GH#78 [https://github.com/bradyrx/climpred/pull/78], GH#87 [https://github.com/bradyrx/climpred/pull/87])
Aaron Spring [https://github.com/aaronspring]


	Adds functions for computing Relative Entropy (GH#73 [https://github.com/bradyrx/climpred/pull/73]) Aaron Spring [https://github.com/aaronspring]


	Sets more intelligible dimension expectations for climpred
(GH#98 [https://github.com/bradyrx/climpred/pull/98], GH#105 [https://github.com/bradyrx/climpred/pull/105]) Riley X. Brady [https://github.com/bradyrx] and Aaron Spring [https://github.com/aaronspring]:



	init:  initialization dates for the prediction ensemble


	lead:  retrospective forecasts from prediction ensemble;
returned dimension for prediction calculations


	time:  time dimension for control runs, references, etc.


	member:  ensemble member dimension.









	Updates open_dataset to display available dataset names when no argument is
passed. (GH#123 [https://github.com/bradyrx/climpred/pull/123]) Riley X. Brady [https://github.com/bradyrx]


	Change ReferenceEnsemble to HindcastEnsemble. (GH#124 [https://github.com/bradyrx/climpred/pull/124]) Riley X. Brady [https://github.com/bradyrx]


	Add probabilistic metrics to climpred. (GH#128 [https://github.com/bradyrx/climpred/pull/128]) Aaron Spring [https://github.com/aaronspring]


	Consolidate separate perfect-model and hindcast functions into singular functions
(GH#128 [https://github.com/bradyrx/climpred/pull/128]) Aaron Spring [https://github.com/aaronspring]


	Add option to pass proxy through to open_dataset for firewalled networks.
(GH#138 [https://github.com/bradyrx/climpred/pull/138]) Riley X. Brady [https://github.com/bradyrx]







Bug Fixes


	xr_rm_poly can now operate on Datasets and with multiple variables.
It also interpolates across NaNs in time series. (GH#94 [https://github.com/bradyrx/climpred/pull/94]) Andrew Huang [https://github.com/ahuang11]


	Travis CI, treon, and pytest all run for automated testing of new features.
(GH#98 [https://github.com/bradyrx/climpred/pull/98], GH#105 [https://github.com/bradyrx/climpred/pull/105], GH#106 [https://github.com/bradyrx/climpred/pull/106]) Riley X. Brady [https://github.com/bradyrx] and Aaron Spring [https://github.com/aaronspring]


	Clean up check_xarray decorators and make sure that they work. (GH#142 [https://github.com/bradyrx/climpred/pull/142])
Andrew Huang [https://github.com/ahuang11]


	Ensures that help() returns proper docstring even with decorators.
(GH#149 [https://github.com/bradyrx/climpred/pull/149]) Andrew Huang [https://github.com/ahuang11]


	Fixes bootstrap so p values are correct. (GH#170 [https://github.com/bradyrx/climpred/pull/170]) Aaron Spring [https://github.com/aaronspring]







Internals/Minor Fixes


	Adds unit testing for all perfect-model comparisons. (GH#107 [https://github.com/bradyrx/climpred/pull/107]) Aaron Spring [https://github.com/aaronspring]


	Updates CESM-LE uninitialized ensemble sample data to have 34 members.
(GH#113 [https://github.com/bradyrx/climpred/pull/113]) Riley X. Brady [https://github.com/bradyrx]


	Adds MPI-ESM hindcast, historical, and assimilation sample data.
(GH#119 [https://github.com/bradyrx/climpred/pull/119]) Aaron Spring [https://github.com/aaronspring]


	Replaces check_xarray with a decorator for checking that input arguments are
xarray objects. (GH#120 [https://github.com/bradyrx/climpred/pull/120]) Andrew Huang [https://github.com/ahuang11]


	Add custom exceptions for clearer error reporting. (GH#139 [https://github.com/bradyrx/climpred/pull/139]) Riley X. Brady [https://github.com/bradyrx]


	Remove “xr” prefix from stats module. (GH#144 [https://github.com/bradyrx/climpred/pull/144]) Riley X. Brady [https://github.com/bradyrx]


	Add codecoverage for testing. (GH#152 [https://github.com/bradyrx/climpred/pull/152]) Riley X. Brady [https://github.com/bradyrx]


	Update exception messages for more pretty error reporting. (GH#156 [https://github.com/bradyrx/climpred/pull/156]) Andrew Huang [https://github.com/ahuang11]


	Add pre-commit and flake8/black check in CI. (GH#163 [https://github.com/bradyrx/climpred/pull/163]) Riley X. Brady [https://github.com/bradyrx]


	Change loadutils module to tutorial and open_dataset to
load_dataset. (GH#164 [https://github.com/bradyrx/climpred/pull/164]) Riley X. Brady [https://github.com/bradyrx]


	Remove predictability horizon function to revisit for v2. (GH#165 [https://github.com/bradyrx/climpred/pull/165])
Riley X. Brady [https://github.com/bradyrx]


	Increase code coverage through more testing. (GH#167 [https://github.com/bradyrx/climpred/pull/167]) Aaron Spring [https://github.com/aaronspring]


	Consolidates checks and constants into modules. (GH#173 [https://github.com/bradyrx/climpred/pull/173]) Andrew Huang [https://github.com/ahuang11]









climpred v0.2 (2019-01-11)

Name changed to climpred, developed enough for basic decadal prediction tasks on a
perfect-model ensemble and reference-based ensemble.




climpred v0.1 (2018-12-20)

Collaboration between Riley Brady and Aaron Spring begins.







          

      

      

    

  

    
      
          
            
  


Helpful Links

We hope to curate in the climpred documentation a comprehensive report of terminology, best
practices, analysis methods, etc. in the prediction community. Here we suggest other resources for
initialized prediction of the Earth system to round out the information provided in our
documentation.


Forecast Verification


	CAWCR Forecast Verification Overview [https://www.cawcr.gov.au/projects/verification/]:
A nice overview of forecast verification, including a suite of metrics and their derivation.










          

      

      

    

  

    
      
          
            
  


Publications Using climpred

Below is a list of publications that have made use of climpred in their analysis. You can nod
to climpred, e.g., in your acknowledgements section to help build the community. The main
developers of the package intend to release a manuscript documenting climpred in 2020 with a
citable DOI, so this can be referenced in the future.

Feel free to open a Pull Request to add your publication to the list!


2019


	Brady, R. X., Lovenduski, N. S., Yeager, S. G., Long, M. C., & Lindsay, K. (2019, October 10).
Skillful multiyear predictions of ocean acidification in the California Current System.
https://doi.org/10.31223/osf.io/3m2h7










          

      

      

    

  

    
      
          
            
  


Contribution Guide

Contributions are highly welcomed and appreciated.  Every little help counts,
so do not hesitate! You can make a high impact on climpred just by using it and
reporting issues [https://github.com/bradyrx/climpred/issues].

The following sections cover some general guidelines
regarding development in climpred for maintainers and contributors.
Nothing here is set in stone and can’t be changed.
Feel free to suggest improvements or changes in the workflow.


Contribution links


	Contribution Guide


	Feature requests and feedback


	Report bugs


	Fix bugs


	Write documentation


	Preparing Pull Requests











Feature requests and feedback

We are eager to hear about your requests for new features and any suggestions about the
API, infrastructure, and so on. Feel free to submit these as
issues [https://github.com/bradyrx/climpred/issues/new] with the label “feature request.”

Please make sure to explain in detail how the feature should work and keep the scope as
narrow as possible. This will make it easier to implement in small PRs.




Report bugs

Report bugs for climpred in the issue tracker [https://github.com/bradyrx/climpred/issues]
with the label “bug”.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting,
specifically the Python interpreter version, installed libraries, and climpred
version.


	Detailed steps to reproduce the bug.




If you can write a demonstration test that currently fails but should passm
that is a very useful commit to make as well, even if you cannot fix the bug itself.




Fix bugs

Look through the GitHub issues for bugs [https://github.com/bradyrx/climpred/labels/bug].

Talk to developers to find out how you can fix specific bugs.




Write documentation

climpred could always use more documentation.  What exactly is needed?


	More complementary documentation.  Have you perhaps found something unclear?


	Docstrings.  There can never be too many of them.


	Example notebooks with different Earth System Models, lead times, etc. – they’re all very
appreciated.




You can also edit documentation files directly in the GitHub web interface,
without using a local copy.  This can be convenient for small fixes.

Our documentation is written in reStructuredText. You can follow our conventions in already written
documents. Some helpful guides are located
here [http://docutils.sourceforge.net/docs/user/rst/quickref.html] and
here [https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst].


Note

Build the documentation locally with the following command:

$ conda env update -f ci/environment-dev-3.6.yml
$ cd docs
$ make html





The built documentation should be available in the docs/build/.



If you need to add new functions to the API, run sphinx-autogen -o api api.rst from the
docs/source directory and add the functions to api.rst.








Preparing Pull Requests


	Fork the
climpred GitHub repository [https://github.com/bradyrx/climpred].  It’s
fine to use climpred as your fork repository name because it will live
under your user.


	Clone your fork locally using git [https://git-scm.com/], connect your repository
to the upstream (main project), and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/climpred.git
$ cd climpred
$ git remote add upstream git@github.com:bradyrx/climpred.git

# now, to fix a bug or add feature create your own branch off "master":

$ git checkout -b your-bugfix-feature-branch-name master





If you need some help with Git, follow this quick start
guide: https://git.wiki.kernel.org/index.php/QuickStart



	Install dependencies into a new conda environment:

$ conda env update -f ci/environment-dev-3.7.yml
$ conda activate climpred-dev







	Make an editable install of climpred by running:

$ pip install -e .







	Install pre-commit [https://pre-commit.com] and its hook on the climpred repo:

$ pip install --user pre-commit
$ pre-commit install





Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit
hooks to ensure code-style and code formatting is consistent.


Now you have an environment called climpred-dev that you can work in.
You’ll need to make sure to activate that environment next time you want
to use it after closing the terminal or your system.

You can now edit your local working copy and run/add tests as necessary. Please follow
PEP-8 for naming. When committing, pre-commit will modify the files as needed, or
will generally be quite clear about what you need to do to pass the commit test.






	Break your edits up into reasonably sized commits.


$ git commit -a -m “<commit message>”
$ git push -u






	Run all the tests

Now running tests is as simple as issuing this command:

$ coverage run --source climpred -m py.test





This command will run tests via the “pytest” tool against Python 3.6.



	Create a new changelog entry in CHANGELOG.rst:


	The entry should be entered as:





<description> (:pr:`#<pull request number>`) `<author's names>`_

where <description> is the description of the PR related to the change and
<pull request number> is the pull request number and <author's names> are your first
and last names.





	Add yourself to list of authors at the end of CHANGELOG.rst file if not there yet, in
alphabetical order.










	Add yourself to the
contributors <https://climpred.readthedocs.io/en/latest/contributors.html>_
list via docs/source/contributors.rst.








	Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/climpred
compare: your-branch-name

base-fork: bradyrx/climpred
base: master









Note that you can create the Pull Request while you’re working on this. The PR will update
as you add more commits. climpred developers and contributors can then review your code
and offer suggestions.







          

      

      

    

  

    
      
          
            
  


Release Procedure

We follow semantic versioning, e.g., v1.0.0. A major version causes incompatible API
changes, a minor version adds functionality, and a patch covers bug fixes.


	Create a new branch release-vX.x.x with the version for the release.






	Update CHANGELOG.rst


	Make sure all new changes, features are reflected in the documentation.








	Open a new pull request for this branch targeting master


	After all tests pass and the PR has been approved, merge the PR into master


	Tag a release and push to github:

$ git tag -a v1.0.0 -m "Version 1.0.0"
$ git push origin master --tags







	Build and publish release on PyPI:

$ git clean -xfd  # remove any files not checked into git
$ python setup.py sdist bdist_wheel --universal  # build package
$ twine upload dist/*  # register and push to pypi







	Update the stable branch (used by ReadTheDocs):

$ git checkout stable
$ git rebase master
$ git push -f origin stable
$ git checkout master







	Update climpred conda-forge feedstock






	Fork climpred-feedstock repository [https://github.com/conda-forge/climpred-feedstock]


	Clone this fork and edit recipe:

$ git clone git@github.com:username/climpred-feedstock.git
$ cd climpred-feedstock
$ cd recipe
$ # edit meta.yaml










	Update version


	Get sha256 from pypi.org for climpred [https://pypi.org/project/climpred/#files]


	Check that requirements.txt from the main climpred repo is accounted for
in meta.yaml from the feedstock.


	Fill in the rest of information as described
here [https://github.com/conda-forge/climpred-feedstock#updating-climpred-feedstock]





	Commit and submit a PR











          

      

      

    

  

    
      
          
            
  


Contributors


Core Developers


	Riley X. Brady (github [https://github.com/bradyrx/])


	Aaron Spring (github [https://github.com/aaronspring/])







Contributors


	Andrew Huang (github [https://github.com/ahuang11/])




For a list of all the contributions, see the github
contribution graph [https://github.com/bradyrx/climpred/graphs/contributors].
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