
climpred

Dec 17, 2019

Getting Started

1 Version 1 Release 3

2 Installation 5

Bibliography 87

Index 89

i

ii

climpred

Getting Started 1

https://travis-ci.org/bradyrx/climpred
https://www.codacy.com/app/bradyrx/climpred?utm_source=github.com&utm_medium=referral&utm_content=bradyrx/climpred&utm_campaign=Badge_Grade
https://pypi.python.org/pypi/climpred/
https://anaconda.org/conda-forge/climpred
https://coveralls.io/github/bradyrx/climpred?branch=master
https://climpred.readthedocs.io/en/stable/?badge=stable
../../LICENSE.txt

climpred

2 Getting Started

CHAPTER 1

Version 1 Release

We currently only support annual forecasts, but our focus is to support sub-annual (e.g., seasonal, monthly, weekly,
daily) in our next major release (v2.0.0). We provide a host of deterministic metrics, as well as some probabilistic
metrics, although the latter have not been tested rigorously. We support both perfect-model and hindcast prediction
ensembles, and provide PerfectModelEnsemble and HindcastEnsemble classes to make analysis easier.

See quick start and our examples to get started.

3

metrics.html
quick-start.html
examples.html

climpred

4 Chapter 1. Version 1 Release

CHAPTER 2

Installation

You can install the latest release of climpred using pip or conda:

pip install climpred

conda install -c conda-forge climpred

You can also install the bleeding edge (pre-release versions) by cloning this repository and running pip install
. --upgrade in the main directory

Getting Started

• Overview: Why climpred?

• Scope of climpred

• Quick Start

• Examples

2.1 Overview: Why climpred?

There are many packages out there related to computing metrics on initialized geoscience predictions. However, we
didn’t find any one package that unified all our needs.

Output from decadal climate prediction experiments is difficult to work with. A typical output file could con-
tain the dimensions initialization, lead time, ensemble member, latitude, longitude, depth.
climpred leverages the labeled dimensions of xarray to handle the headache of bookkeeping for you. We offer
HindcastEnsemble and PerfectModelEnsemble objects that carry references (e.g., control runs, reconstruc-
tions, uninitialized ensembles) along with your decadal prediction output.

When computing lead-dependent skill scores, climpred handles all of the lag-correlating for you. We offer
a suite of vectorized deterministic and probabilistic metrics that can be applied to time series and grids. It’s
as easy as adding your decadal prediction output to an object and running compute: HindcastEnsemble.
compute_metric(metric='rmse').

5

climpred

2.2 Scope of climpred

climpred aims to be the primary package used to analyze output from initialized dynamical forecast models, ranging
from short-term weather forecasts to decadal climate forecasts. The code base will be driven entirely by the geoscien-
tific prediction community through open source development. It leverages xarray to keep track of core prediction
ensemble dimensions (e.g., ensemble member, initialization date, and lead time) and dask to perform out-of-memory
computations on large datasets.

The primary goal of climpred is to offer a comprehensive set of analysis tools for assessing the forecasts relative
to references (e.g., observations, reanalysis products, control runs, baseline forecasts). This will range from simple
deterministic and probabilistic verification metrics—such as mean absolute error and various skill scores—to more
advanced analysis methods, such as relative entropy and mutual information. climpred expects users to handle their
domain-specific post-processing of model output, so that the package can focus on the actual analysis of forecasts.

Finally, the climpred documentation will serve as a repository of unified analysis methods through jupyter notebook
examples, and will also collect relevant references and literature.

2.3 Quick Start

The easiest way to get up and running is to load in one of our example datasets (or load in some data of your own) and
to convert them to either a HindcastEnsemble or PerfectModelEnsemble object.

climpred provides example datasets from the MPI-ESM-LR decadal prediction ensemble and the CESM decadal
prediction ensemble. See our examples to see some analysis cases.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
import climpred

You can view the datasets available to be loaded with the load_datasets() command without passing any arguments:

[2]: climpred.tutorial.load_dataset()

'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global
→˓mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean
→˓SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs

6 Chapter 2. Installation

api/climpred.classes.HindcastEnsemble.html#climpred.classes.HindcastEnsemble
api/climpred.classes.PerfectModelEnsemble.html#climpred.classes.PerfectModelEnsemble
examples.html
api/climpred.tutorial.load_dataset.html#climpred.tutorial.load_dataset

climpred

From here, loading a dataset is easy. Note that you need to be connected to the internet for this to work – the datasets
are being pulled from the climpred-data repository. Once loaded, it is cached on your computer so you can reload
extremely quickly. These datasets are very small (< 1MB each) so they won’t take up much space.

[3]: hind = climpred.tutorial.load_dataset('CESM-DP-SST')
obs = climpred.tutorial.load_dataset('ERSST')

Make sure your prediction ensemble’s dimension labeling conforms to climpred’s standards. In other words, you
need an init, lead, and (optional) member dimension. Make sure that your init and lead dimensions align.
E.g., a November 1st, 1954 initialization should be labeled as init=1954 so that the lead=1 forecast is 1955.

[4]: print(hind)

<xarray.Dataset>
Dimensions: (init: 64, lead: 10, member: 10)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* member (member) int32 1 2 3 4 5 6 7 8 9 10

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0
Data variables:

SST (init, lead, member) float64 ...

We’ll quickly process the data to create anomalies. CESM-DPLE’s drift-correction occurs over 1964-2014, so we’ll
remove that from the observations.

[5]: # subtract climatology
obs = obs - obs.sel(time=slice(1964, 2014)).mean()

We can now create a HindcastEnsemble object and add our reference and name it 'Obs'.

[6]: hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_reference(obs, 'Obs')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
Obs:

SST (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:

None

We’ll remove a linear trend so that it doesn’t artificially boost our predictability. Note that climpred objects (Hind-
castEnsemble and PerfectModelEnsemble) can have any arbitrary xarray function applied to them. Here, we use
the xarray .apply() function to apply our climpred trend removal function.

[7]: # Apply the `rm_trend` function twice to detrend our obs over time and
detrend our initialized forecasts over init. The objects ignore an xarray
operation if the dimension doesn't exist for the given dataset.
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='time')
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='init')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 0.005165 0.03014 ... 0.1842 0.1812
Obs:

SST (time) float32 -0.061960407 -0.023283795 ... 0.072058104 0.165859

(continues on next page)

2.3. Quick Start 7

https://github.com/bradyrx/climpred-data
setting-up-data.html
api/climpred.classes.HindcastEnsemble.html#climpred.classes.HindcastEnsemble
api/climpred.classes.HindcastEnsemble.html#climpred.classes.HindcastEnsemble
api/climpred.classes.HindcastEnsemble.html#climpred.classes.HindcastEnsemble
api/climpred.classes.PerfectModelEnsemble.html#climpred.classes.PerfectModelEnsemble

climpred

(continued from previous page)

Uninitialized:
None

Now we’ll quickly calculate skill and persistence. We have a variety of possible metrics to use.

[8]: init = hindcast.compute_metric(metric='acc')
persistence = hindcast.compute_persistence(metric='acc')
print(init)

<xarray.Dataset>
Dimensions: (lead: 10)
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10
Data variables:

SST (lead) float64 0.6778 0.5476 0.4527 ... 0.1393 -0.03366 -0.1084
Attributes:

prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_hindcast
number_of_initializations: 64
number_of_members: 10
metric: pearson_r
comparison: e2r
units: None
created: 2019-12-17 21:09:06

[9]: plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
init.SST.plot(marker='o', markersize=10, label='skill')
persistence.SST.plot(marker='o', markersize=10, label='persistence',

color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Predictability',

ylabel='Anomaly \n Correlation Coefficient',
xlabel='Lead Year')

plt.show()

We can also check error in our forecasts.

8 Chapter 2. Installation

https://climpred.readthedocs.io/en/latest/metrics.html

climpred

[10]: init = hindcast.compute_metric(metric='rmse')
persistence = hindcast.compute_persistence(metric='rmse')

[11]: plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
init.SST.plot(marker='o', markersize=10, label='initialized forecast')
persistence.SST.plot(marker='o', markersize=10, label='persistence',

color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Forecast Error',

ylabel='RMSE',
xlabel='Lead Year')

plt.show()

2.4 Examples

2.4.1 Demo of Perfect Model Predictability Functions

This demo demonstrates climpred’s capabilities for a perfect-model framework ensemble simulation.

What’s a perfect-model framework simulation?

A perfect-model framework uses a set of ensemble simulations that are based on a General Circulation Model (GCM)
or Earth System Model (ESM) alone. There is no use of any reanalysis, reconstruction, or data product to initialize the
decadal prediction ensemble. An arbitrary number of members are initialized from perturbed initial conditions (the
“ensemble”), and the control simulation can be viewed as just another member.

How to compare predictability skill score: As no observational data interferes with the random climate evolution
of the model, we cannot use an observation-based reference for computing skill scores. Therefore, we can compare
the members with one another (m2m), against the ensemble mean (m2e), or against the control (m2c). We can also
compare the ensemble mean to the control (e2c). See the comparisons page for more information.

When to use perfect-model frameworks:

• You don’t have a sufficiently long observational record to use as a reference.

• You want to avoid biases between model climatology and reanalysis climatology.

2.4. Examples 9

../comparisons.html

climpred

• You want to avoid sensitive reactions of biogeochemical cycles to disruptive changes in ocean physics due to
assimilation.

• You want to delve into process understanding of predictability in a model without outside artifacts.

[1]: import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

import climpred

[2]: warnings.filterwarnings("ignore")

Load sample data

Here we use a subset of ensembles and members from the MPI-ESM-LR (CMIP6 version) esmControl simulation of
an early state. This corresponds to vga0214 from year 3000 to 3300.

1-dimensional output

Our 1D sample output contains datasets of time series of certain spatially averaged area (‘global’, ‘North_Atlantic’)
and temporally averaged period (‘ym’, ‘DJF’, . . .) for some lead years (1, . . . , 20).

ds: The ensemble dataset of all members (1, . . . , 10), inits (initialization years: 3014, 3023, . . . , 3257), areas,
periods, and lead years.

control: The control dataset with the same areas and periods, as well as the years 3000 to 3299.

[3]: ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D')
control = climpred.tutorial.load_dataset('MPI-control-1D')

[4]: # Add to climpred PerfectModelEnsemble object.
pm = climpred.PerfectModelEnsemble(ds)
pm = pm.add_control(control)
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (period, lead, area, init, member) float32 ...
sos (period, lead, area, init, member) float32 ...
AMO (period, lead, area, init, member) float32 ...

Control:
tos (period, time, area) float32 ...
sos (period, time, area) float32 ...
AMO (period, time, area) float32 ...

Uninitialized:
None

We’ll sub-select annual means (‘ym’) of sea surface temperature (‘tos’) in the North Atlantic.

10 Chapter 2. Installation

climpred

[5]: # Currently cannot sub-select variables. Easiest way is to just use drop, or if there
→˓'s lots
of variables, select them before creating the object.
pm = pm.sel(area='North_Atlantic', period='ym').drop(['sos', 'AMO']).reset_
→˓coords(drop=True)

Bootstrapping with Replacement

Here, we bootstrap the ensemble with replacement [Goddard et al. 2013] to compare the initialized ensemble to an
“uninitialized” counterpart and a persistence forecast. The visualization is based on those used in [Li et al. 2016]. The
p-value demonstrates the probability that the uninitialized or persistence beats the initialized forecast based on N=100
bootstrapping with replacement.

[6]: for metric in ['acc', 'rmse']:
bootstrapped = pm.bootstrap(metric=metric, comparison='m2e', bootstrap=100,

→˓sig=95)
Hacky fix that needs to be dealt with in a PR.
climpred objects return a dataset. graphics module wants a DataArray but looks
for the attributes that are attached to the Dataset.
bs = bootstrapped['tos']
bs.attrs = bootstrapped.attrs
climpred.graphics.plot_bootstrapped_skill_over_leadyear(bs, sig=95)
plt.title(' '.join(['SST', 'North Atlantic', 'Annual:', metric]),fontsize=18)
plt.ylabel(metric)
plt.show()

bootstrapping iteration: 100%|| 100/100 [00:39<00:00, 2.55it/s]

bootstrapping iteration: 100%|| 100/100 [00:37<00:00, 2.69it/s]

2.4. Examples 11

climpred

Computing Skill with Different Comparison Methods

Here, we use compute_perfect_model to compute the Anomaly Correlation Coefficient (ACC) with different
comparison methods. This generates different ACC values by design. See the comparisons page for a description of
the various ways to compute skill scores for a perfect-model framework.

[7]: for c in ['e2c','m2c','m2e','m2m']:
pm.compute_metric(metric='acc', comparison=c)['tos'].plot(label=c)

Persistence computation for a baseline.
pm.compute_persistence(metric='acc')['tos'].plot(label='persistence', ls=':')
plt.ylabel('ACC')
plt.xticks(np.arange(1,21))
plt.legend()
plt.title('Different forecast-reference comparisons for pearson_r \n lead to
→˓systematically different magnitude of skill score')
plt.show()

12 Chapter 2. Installation

../comparisons.html

climpred

3-dimensional output (maps)

We also have some sample output that contains gridded time series on the curvilinear MPI grid. Our compute functions
(compute_perfect_model, compute_persistence) are indifferent to any dimensions that exist in addition
to init, member, and lead. In other words, the functions are set up to make these computations on a grid, if one
includes lat, lon, lev, depth, etc.

ds3d: The ensemble dataset of members (1, 2, 3, 4), inits (initialization years: 3014, 3061, 3175, 3237), and
lead years (1, 2, 3, 4, 5).

control3d: The control dataset spanning (3000, . . . , 3049).

Note: These are very small subsets of the actual MPI simulations so that we could host the sample output maps on
Github.

[8]: # Sea surface temperature
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D') \

.sel(init=3014) \

.expand_dims('init')['tos']
control3d = climpred.tutorial.load_dataset('MPI-control-3D')['tos']

[9]: # Create climpred PerfectModelEnsemble object.
pm = climpred.PerfectModelEnsemble(ds3d)
pm = pm.add_control(control3d)
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (init, lead, member, y, x) float32 nan nan nan nan ... nan nan nan
Control:

tos (time, y, x) float32 ...
Uninitialized:

None

2.4. Examples 13

climpred

Maps of Skill by Lead Year

[10]: pm.compute_metric(metric='rmse', comparison='m2e')['tos'].T.plot(col='lead',
→˓robust=True, yincrease=False)

[10]: <xarray.plot.facetgrid.FacetGrid at 0x11abb3cf8>

References

1. Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and Rich
Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.” Climate
Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

2. Collins, Matthew, and Sinha Bablu. “Predictability of Decadal Variations in the Thermohaline Circulation and
Climate.” Geophysical Research Letters 30, no. 6 (March 22, 2003). https://doi.org/10/cts3cr.

3. Goddard, Lisa, et al. “A verification framework for interannual-to-decadal predictions experiments.” Climate
Dynamics 40.1-2 (2013): 245-272.

4. Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variability.”
Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

5. Hawkins, Ed, Steffen Tietsche, Jonathan J. Day, Nathanael Melia, Keith Haines, and Sarah Keeley. “Aspects of
Designing and Evaluating Seasonal-to-Interannual Arctic Sea-Ice Prediction Systems.” Quarterly Journal of the
Royal Meteorological Society 142, no. 695 (January 1, 2016): 672–83. https://doi.org/10/gfb3pn.

6. Li, Hongmei, Tatiana Ilyina, Wolfgang A. Müller, and Frank Sienz. “Decadal Predictions of the North Atlantic
CO2 Uptake.” Nature Communications 7 (March 30, 2016): 11076. https://doi.org/10/f8wkrs.

7. Pohlmann, Holger, Michael Botzet, Mojib Latif, Andreas Roesch, Martin Wild, and Peter Tschuck. “Estimating
the Decadal Predictability of a Coupled AOGCM.” Journal of Climate 17, no. 22 (November 1, 2004): 4463–72.
https://doi.org/10/d2qf62.

2.4.2 Hindcast Predictions of Equatorial Pacific SSTs

In this example, we evaluate hindcasts (retrospective forecasts) of sea surface temperatures in the eastern equatorial
Pacific from CESM-DPLE. These hindcasts are evaluated against a forced ocean–sea ice simulation that initializes the
model.

See the quick start for an analysis of time series (rather than maps) from a hindcast prediction ensemble.

[1]: import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt

(continues on next page)

14 Chapter 2. Installation

https://doi.org/10/gd7hfq
https://doi.org/10/cts3cr
https://doi.org/10/ch4kc4
https://doi.org/10/gfb3pn
https://doi.org/10/f8wkrs
https://doi.org/10/d2qf62
../quick-start.html

climpred

(continued from previous page)

import numpy as np

import climpred
from climpred import HindcastEnsemble

[2]: warnings.filterwarnings("ignore")

We’ll load in a small region of the eastern equatorial Pacific for this analysis example.

[3]: climpred.tutorial.load_dataset()

'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global
→˓mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean
→˓SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs

[4]: hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D')['SST']
recon = climpred.tutorial.load_dataset('FOSI-SST-3D')['SST']
print(hind)

<xarray.DataArray 'SST' (init: 64, lead: 10, nlat: 37, nlon: 26)>
[615680 values with dtype=float32]
Coordinates:

TLAT (nlat, nlon) float64 ...
TLONG (nlat, nlon) float64 ...

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10
TAREA (nlat, nlon) float64 ...

Dimensions without coordinates: nlat, nlon

These two example products cover a small portion of the eastern equatorial Pacific.

[5]: ax = plt.axes(projection=ccrs.Orthographic(-80, 0))
p = ax.pcolormesh(recon.TLONG, recon.TLAT, recon.mean('time'),

transform=ccrs.PlateCarree(), cmap='twilight')
ax.add_feature(cfeature.LAND, color='#d3d3d3')
ax.set_global()
plt.colorbar(p, label='Sea Surface Temperature [degC]')
ax.set(title='Example Data Coverage')

[5]: [Text(0.5, 1.0, 'Example Data Coverage')]

2.4. Examples 15

climpred

We first need to remove the same climatology that was used to drift-correct the CESM-DPLE. Then we’ll create a
detrended version of our two products to assess detrended predictability.

[6]: # Remove 1964-2014 climatology.
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')

Although functions can be called directly in climpred, we suggest that you use our classes (HindcastEnsemble
and PerfectModelEnsemble) to make analysis code cleaner.

[7]: hindcast = HindcastEnsemble(hind)
hindcast = hindcast.add_reference(recon, 'Reconstruction')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, nlat, nlon) float32 ...
Reconstruction:

SST (time, nlat, nlon) float32 0.0029411316 0.0013866425 ... 1.4646168
Uninitialized:

None

I’ll also detrend the reconstruction over its time dimension and initialized forecast ensemble over init.

[8]: # Apply the `rm_trend` function twice to detrend our obs over time and
detrend our initialized forecasts over init. The objects ignore an xarray
operation if the dimension doesn't exist for the given dataset.
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='init')
hindcast = hindcast.apply(climpred.stats.rm_trend, dim='time')

Anomaly Correlation Coefficient of SSTs

We can now compute the ACC over all leads and all grid cells.

[9]: predictability = hindcast.compute_metric(metric='acc')
print(predictability)

<xarray.Dataset>
Dimensions: (lead: 10, nlat: 37, nlon: 26)

(continues on next page)

16 Chapter 2. Installation

climpred

(continued from previous page)

Coordinates:
TLONG (lead, nlat, nlon) float64 250.8 251.9 253.1 ... 276.7 277.8 278.9
TAREA (lead, nlat, nlon) float64 3.661e+13 3.661e+13 ... 3.714e+13

* nlat (nlat) int64 0 1 2 3 4 5 6 7 8 9 ... 27 28 29 30 31 32 33 34 35 36

* nlon (nlon) int64 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 24 25

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10
TLAT (lead, nlat, nlon) float64 -9.75 -9.75 -9.75 ... -0.1336 -0.1336

Data variables:
SST (lead, nlat, nlon) float32 0.54588705 0.53977644 ... 0.088374

Attributes:
prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_hindcast
number_of_initializations: 64
metric: pearson_r
comparison: e2r
units: None
created: 2019-11-21 15:52:28

We use the pval keyword to get associated p-values for our ACCs. We can then mask our final maps based on
𝛼 = 0.05.

[10]: significance = hindcast.compute_metric(metric='p_pval')

Mask latitude and longitude by significance for stippling.
siglat = significance.TLAT.where(significance.SST <= 0.05)
siglon = significance.TLONG.where(significance.SST <= 0.05)

[11]: p = predictability.SST.plot.pcolormesh(x='TLONG', y='TLAT',
transform=ccrs.PlateCarree(),
col='lead', col_wrap=5,
subplot_kws={'projection': ccrs.PlateCarree(),

'aspect': 3},
cbar_kwargs={'label': 'Anomaly Correlation

→˓Coefficient'},
vmin=-0.7, vmax=0.7,
cmap='RdYlBu_r')

for i, ax in enumerate(p.axes.flat):
ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
ax.gridlines(alpha=0.3, color='k', linestyle=':')
Add significance stippling
ax.scatter(siglon.isel(lead=i),

siglat.isel(lead=i),
color='k',
marker='.',
s=1.5,
transform=ccrs.PlateCarree())

2.4. Examples 17

climpred

Root Mean Square Error of SSTs

We can also check error in our forecasts, just by changing the metric keyword.

[12]: rmse = hindcast.compute_metric(metric='rmse')

[13]: p = rmse.SST.plot.pcolormesh(x='TLONG', y='TLAT',
transform=ccrs.PlateCarree(),
col='lead', col_wrap=5,
subplot_kws={'projection': ccrs.PlateCarree(),

'aspect': 3},
cbar_kwargs={'label': 'Root Mean Square Error (degC)'},
cmap='Purples')

for ax in p.axes.flat:
ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
ax.gridlines(alpha=0.3, color='k', linestyle=':')

[]:

18 Chapter 2. Installation

climpred

2.4.3 Diagnosing Potential Predictability

This demo demonstrates climpred’s capabilities to diagnose areas containing potentially predictable variations from
a control or reference alone without requiring multi-member, multi-initialization simulations. This notebook identifies
the slow components of internal variability that indicate potential predictability. Here, we showcase a set of methods
to show regions indicating probabilities for decadal predictability.

[1]: import warnings
%matplotlib inline
import climpred
warnings.filterwarnings("ignore")

[2]: # Sea surface temperature
varname='tos'
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname].load()

Diagnostic Potential Predictability (DPP)

We can first use the [Resplandy 2015] and [Seferian 2018] method for computing the unbiased DPP by not chunking
the time dimension.

[3]: # calculate DPP with m=10
DPP10 = climpred.stats.dpp(control3d, m=10, chunk=False)
calculate a threshold by random shuffling (based on bootstrapping with replacement
→˓at 95% significance level)
threshold = climpred.bootstrap.dpp_threshold(control3d,

m=10,
chunk=False,
bootstrap=10,
sig=95)

plot grid cells where DPP above threshold
DPP10.where(DPP10 > threshold).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap=
→˓'viridis')

[3]: <matplotlib.collections.QuadMesh at 0x7fa3315bb908>

Now, we can turn on chunking (the default for this function) to use the [Boer 2004] method.

2.4. Examples 19

climpred

[4]: # chunk = True signals the Boer 2004 method
DPP10 = climpred.stats.dpp(control3d, m=10, chunk=True)
threshold = climpred.bootstrap.dpp_threshold(control3d,

m=10,
chunk=True,
bootstrap=50,
sig=95)

DPP10.where(DPP10>0).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap='viridis')

[4]: <matplotlib.collections.QuadMesh at 0x7fa331c7e0b8>

Variance-Weighted Mean Period

A periodogram is computed based on a control simulation to extract the mean period of variations, which are weighted
by the respective variance. Regions with a high mean period value indicate low-frequency variations with are poten-
tially predictable [Branstator 2010].

[5]: vwmp = climpred.stats.varweighted_mean_period(control3d, dim='time')
threshold = climpred.bootstrap.varweighted_mean_period_threshold(control3d,

bootstrap=10)
vwmp.where(vwmp > threshold).plot(yincrease=False, robust=True)

[5]: <matplotlib.collections.QuadMesh at 0x7fa3131b7240>

20 Chapter 2. Installation

climpred

Lag-1 Autocorrelation

The lag-1 autocorrelation also indicates where slower modes of variability occur by identifying regions with high
temporal correlation [vonStorch 1999].

[6]: # use climpred.bootstrap._bootstrap_func to wrap any stats function
threshold = climpred.bootstrap._bootstrap_func(climpred.stats.autocorr,control3d,'time
→˓',bootstrap=100)
corr_ef = climpred.stats.autocorr(control3d, dim='time')
corr_ef.where(corr_ef>threshold).plot(yincrease=False, robust=False)

[6]: <matplotlib.collections.QuadMesh at 0x7fa3213b8cc0>

2.4. Examples 21

climpred

Decorrelation time

Taking the lagged correlation further over all lags, the decorrelation time shows the time after which the autocorrelation
fell beyond its e-folding [vonStorch 1999]

[7]: threshold = climpred.bootstrap._bootstrap_func(climpred.stats.decorrelation_time,
→˓control3d,'time',bootstrap=100)
decorr_time = climpred.stats.decorrelation_time(control3d)
decorr_time.where(decorr_time>threshold).plot(yincrease=False, robust=False)

[7]: <matplotlib.collections.QuadMesh at 0x7fa3312afa58>

Verify diagnostic potential predictability in predictability simulations

Do we find predictability in the areas highlighted above also in perfect-model experiments?

[8]: ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D')[varname].load()

[9]: bootstrap_skill = climpred.bootstrap.bootstrap_perfect_model(ds3d,
control3d,
metric='rmse',
comparison='m2e',
bootstrap=20)

HBox(children=(FloatProgress(value=0.0, description='bootstrapping iteration', max=20.
→˓0, style=ProgressStyle(d...

[10]: init_skill = bootstrap_skill.sel(results='skill',kind='init')
p value: probability that random uninitialized forecasts perform better than
→˓initialized
p = bootstrap_skill.sel(results='p',kind='uninit')

[11]: init_skill.where(p<=.05).plot(col='lead', robust=True, yincrease=False)

[11]: <xarray.plot.facetgrid.FacetGrid at 0x7fa311a2c898>

22 Chapter 2. Installation

climpred

The metric rmse is negatively oriented, e.g. higher values show large disprepancy between members and hence less
skill.

As suggested by DPP, the variance-weighted mean period and autocorrelation, also in slight perturbed initial values
ensembles there is predictability in the North Atlantic, North Pacific and Southern Ocean in sea-surface temperatures.

References

1. Boer, Georges J. “Long time-scale potential predictability in an ensemble of coupled climate models.” Climate
dynamics 23.1 (2004): 29-44.

2. Resplandy, Laure, R. Séférian, and L. Bopp. “Natural variability of CO2 and O2 fluxes: What can we learn from
centuries-long climate models simulations?.” Journal of Geophysical Research: Oceans 120.1 (2015): 384-404.

3. Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the Decadal Predictability of Land and
Ocean Carbon Uptake.” Geophysical Research Letters, March 15, 2018. https://doi.org/10/gdb424.

4. Branstator, Grant, and Haiyan Teng. “Two Limits of Initial-Value Decadal Predictability in a CGCM.” Journal
of Climate 23, no. 23 (August 27, 2010): 6292–6311. https://doi.org/10/bwq92h.

5. Storch, H. v, and Francis W. Zwiers. Statistical Analysis in Climate Research. Cambridge; New York: Cam-
bridge University Press, 1999.

2.4.4 Temporal and spatial smoothing

This demo demonstrates climpred’s capabilities to postprocess decadal prediction output before skill verification.
Here, we showcase a set of methods to smooth out noise in the spatial and temporal domain.

[1]: import warnings
%matplotlib inline
import climpred
warnings.filterwarnings("ignore")

[2]: # Sea surface temperature
varname='tos'
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D')[varname]
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname]

Temporal smoothing

In order to reduce temporal noise, decadal predictions are recommended to take multi-year averages [Goddard2013].

[3]: ds3d_ts = climpred.smoothing.temporal_smoothing(ds3d,smooth_kws={'lead':4})
control3d_ts = climpred.smoothing.temporal_smoothing(control3d, smooth_kws={'time':4})

2.4. Examples 23

https://doi.org/10/gdb424
https://doi.org/10/bwq92h

climpred

[4]: climpred.prediction.compute_perfect_model(ds3d_ts,
control3d_ts,
metric='rmse',
comparison='m2e') \

.plot(col='lead', robust=True, yincrease=False)

[4]: <xarray.plot.facetgrid.FacetGrid at 0x1088d1518>

Compare to without smoothing:

[5]: climpred.prediction.compute_perfect_model(ds3d,
control3d,
metric='rmse',
comparison='m2e') \

.plot(col='lead', vmax=.69, yincrease=False)

[5]: <xarray.plot.facetgrid.FacetGrid at 0x1249b5278>

Note: When using temporal_smoothing on compute_hindcast, set rename_dim=False and after calculating the
skill _reset_temporal_axis to get proper labeling of the lead dimension.

[6]: hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D').load()['SST']
reconstruction = climpred.tutorial.load_dataset('FOSI-SST-3D').load()['SST']
get anomaly reconstruction
reconstruction = reconstruction - reconstruction.mean('time')

[7]: hind_ts = climpred.smoothing.temporal_smoothing(hind,smooth_kws={'lead':4},rename_
→˓dim=False)
reconstruction_ts = climpred.smoothing.temporal_smoothing(reconstruction, smooth_kws={
→˓'time':4},rename_dim=False)

[8]: s = climpred.prediction.compute_hindcast(hind_ts,
reconstruction_ts,

(continues on next page)

24 Chapter 2. Installation

climpred

(continued from previous page)

metric='rmse',
comparison='e2r')

s = climpred.smoothing._reset_temporal_axis(s,smooth_kws={'lead':4})
s.plot(col='lead', robust=True)

[8]: <xarray.plot.facetgrid.FacetGrid at 0x1206d6ef0>

Spatial smoothing

In order to reduce spatial noise, global decadal predictions are recommended to get regridded to a 5 degree longitude
x 5 degree latitude grid as recommended [Goddard2013].

[9]: ds3d_ss = climpred.smoothing.spatial_smoothing_xesmf(ds3d,d_lon_lat_kws={'lon':5, 'lat
→˓':5})
control3d_ss = climpred.smoothing.spatial_smoothing_xesmf(control3d, d_lon_lat_kws={
→˓'lon':5,'lat':5})

Create weight file: bilinear_220x256_36x73.nc
Reuse existing file: bilinear_220x256_36x73.nc

[10]: climpred.prediction.compute_perfect_model(ds3d_ss,
control3d_ss,
metric='rmse',
comparison='m2e') \

.plot(col='lead', robust=True, yincrease=True)

[10]: <xarray.plot.facetgrid.FacetGrid at 0x1220bf588>

Alternatively, also climpred.smoothing.spatial_smoothing_xrcoarsen aggregates gridcells like
xr_coarsen.

smooth_goddard2013 creates 4-year means and 5x5 degree regridding as suggested in [Goddard2013].

[11]: climpred.smoothing.smooth_goddard_2013(ds3d).coords

Reuse existing file: bilinear_220x256_36x73.nc

[11]: Coordinates:

* lead (lead) <U3 '1-4' '2-5'

* init (init) int64 3014 3061 3175 3237

* member (member) int64 1 2 3 4

(continues on next page)

2.4. Examples 25

climpred

(continued from previous page)

* lon (lon) float64 -180.0 -175.0 -170.0 -165.0 ... 170.0 175.0 180.0

* lat (lat) float64 -83.97 -78.97 -73.97 -68.97 ... 81.03 86.03 91.03

References

1. Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification Frame-
work for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2 (January 1, 2013):
245–72. https://doi.org/10/f4jjvf.

User Guide

• Setting Up Your Dataset

• PredictionEnsemble Objects

• Comparisons

• Metrics

• Prediction Terminology

• Baseline Forecasts

2.5 Setting Up Your Dataset

climpred relies on a consistent naming system for xarray dimensions. This allows things to run more easily
under-the-hood.

Prediction ensembles are expected at the minimum to contain dimensions init and lead. init is the initialization
dimension, that relays the time steps at which the ensemble was initialized. lead is the lead time of the forecasts
from initialization. Another crucial dimension is member, which holds the various ensemble members. Any additional
dimensions will be passed through climpred without issue: these could be things like lat, lon, depth, etc.

Control runs, references, and observational products are expected to contain the time dimension at the minimum.
For best use of climpred, their time dimension should cover the full length of init from the accompanying
prediction ensemble, if possible. These products can also include additional dimensions, such as lat, lon, depth,
etc.

See the below table for a summary of dimensions used in climpred, and data types that climpred supports for
them.

short_name types long_name
lead int lead timestep after initialization [init]
init int initialization: start date of experiment
member int, str ensemble member

2.6 PredictionEnsemble Objects

One of the major features of climpred is our objects that are based upon the PredictionEnsemble class. We
supply users with a HindcastEnsemble and PerfectModelEnsemble object. We encourage users to take
advantage of these high-level objects, which wrap all of our core functions. These objects don’t comprehensively
cover all functions yet, but eventually we’ll deprecate direct access to the function calls in favor of the lightweight
objects.

26 Chapter 2. Installation

https://doi.org/10/f4jjvf

climpred

Briefly, we consider a HindcastEnsemble to be one that is initialized from some observational-like product (e.g.,
assimilated data, reanalysis products, or a model reconstruction). Thus, this object is built around comparing the
initialized ensemble to various observational products. In contrast, a PerfectModelEnsemble is one that is
initialized off of a model control simulation. These forecasting systems are not meant to be compared directly to
real-world observations. Instead, they provide a contained model environment with which to theoretically study the
limits of predictability. You can read more about the terminology used in climpred here.

Let’s create a demo object to explore some of the functionality and why they are much smoother to use than direct
function calls.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
import climpred

We can pull in some sample data that is packaged with climpred.

[2]: climpred.tutorial.load_dataset()

'MPI-control-1D': area averages for the MPI control run of SST/SSS.
'MPI-control-3D': lat/lon/time for the MPI control run of SST/SSS.
'MPI-PM-DP-1D': perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
'MPI-PM-DP-3D': perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
'CESM-DP-SST': hindcast decadal prediction ensemble of global mean SSTs.
'CESM-DP-SSS': hindcast decadal prediction ensemble of global mean SSS.
'CESM-DP-SST-3D': hindcast decadal prediction ensemble of eastern Pacific SSTs.
'CESM-LE': uninitialized ensemble of global mean SSTs.
'MPIESM_miklip_baseline1-hind-SST-global': hindcast initialized ensemble of global
→˓mean SSTs
'MPIESM_miklip_baseline1-hist-SST-global': uninitialized ensemble of global mean SSTs
'MPIESM_miklip_baseline1-assim-SST-global': assimilation in MPI-ESM of global mean
→˓SSTs
'ERSST': observations of global mean SSTs.
'FOSI-SST': reconstruction of global mean SSTs.
'FOSI-SSS': reconstruction of global mean SSS.
'FOSI-SST-3D': reconstruction of eastern Pacific SSTs

2.6.1 HindcastEnsemble

We’ll start out with a HindcastEnsemble demo, followed by a PerfectModelEnsemble case.

[3]: hind = climpred.tutorial.load_dataset('CESM-DP-SST') # CESM-DPLE hindcast ensemble
→˓output.
obs = climpred.tutorial.load_dataset('ERSST') # ERSST observations.
recon = climpred.tutorial.load_dataset('FOSI-SST') # Reconstruction simulation that
→˓initialized CESM-DPLE.

CESM-DPLE was drift-corrected prior to uploading the output, so we just need to subtract the climatology over the
same period for our other products before building the object.

[4]: obs = obs - obs.sel(time=slice(1964, 2014)).mean('time')
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')

Now we instantiate the HindcastEnsemble object and append all of our products to it.

2.6. PredictionEnsemble Objects 27

terminology.html

climpred

[5]: hindcast = HindcastEnsemble(hind) # Instantiate object by passing in our initialized
→˓ensemble.
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
References:

None
Uninitialized:

None

Now we just use the add_ methods to attach other objects. See the API here. Note that we strive to make
our conventions follow those of ‘‘xarray‘‘’s. For example, we don’t allow inplace operations. One has to
run hindcast = hindcast.add_reference(...) to modify the object upon later calls rather than just
hindcast.add_reference(...).

[6]: hindcast = hindcast.add_reference(recon, 'reconstruction')
hindcast = hindcast.add_reference(obs, 'ERSST')

[7]: print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
reconstruction:

SST (time) float64 -0.05064 -0.0868 -0.1396 ... 0.3023 0.3718 0.292
ERSST:

SST (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:

None

You can apply most standard xarray functions directly to our objects! climpred will loop through the objects and
apply the function to all applicable xarray.Datasets within the object. If you reference a dimension that doesn’t
exist for the given xarray.Dataset, it will ignore it. This is useful, since the initialized ensemble is expected to
have dimension init, while other products have dimension time (see more here).

Let’s start by taking the ensemble mean of the initialized ensemble so our metric computations don’t have to take the
extra time on that later. I’m just going to use deterministic metrics here, so we don’t need the individual ensemble
members. Note that above our initialized ensemble had a member dimension, and now it is reduced.

[8]: hindcast = hindcast.mean('member')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead) float64 -0.2121 -0.1637 -0.1206 ... 0.7286 0.7532
reconstruction:

SST (time) float64 -0.05064 -0.0868 -0.1396 ... 0.3023 0.3718 0.292
ERSST:

SST (time) float32 -0.40146065 -0.35238647 ... 0.34601402 0.45021248
Uninitialized:

None

We still have a trend in all of our products, so we could also detrend them as well.

[9]: hindcast.get_reference('reconstruction').SST.plot()

28 Chapter 2. Installation

api.html#add-and-retrieve-datasets
setting-up-data.html

climpred

[9]: [<matplotlib.lines.Line2D at 0x110386710>]

[10]: from scipy.signal import detrend

I’m going to transpose this first since my initialized ensemble has dimensions ordered (init, lead) and scipy.
signal.detrend is applied over the last axis. I’d like to detrend over the init dimension rather than lead
dimension.

[11]: hindcast = hindcast.transpose().apply(detrend)

And it looks like everything got detrended by a linear fit! That wasn’t too hard.

[12]: hindcast.get_reference('reconstruction').SST.plot()

[12]: [<matplotlib.lines.Line2D at 0x129a77c18>]

[13]: hindcast.get_initialized().isel(lead=0).SST.plot()

[13]: [<matplotlib.lines.Line2D at 0x129af50f0>]

2.6. PredictionEnsemble Objects 29

climpred

Now that we’ve done our pre-processing, let’s quickly compute some metrics. Check the metrics page here for all
the keywords you can use. The API is currently pretty simple for the HindcastEnsemble. You can essentially
compute standard skill metrics and a reference persistence forecast.

If you just pass a metric, it’ll compute the skill metric against all references and return a dictionary with keys of the
names the user entered when adding them.

[14]: hindcast.compute_metric(metric='mse')

[14]: {'reconstruction': <xarray.Dataset>
Dimensions: (lead: 10)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10
Data variables:

SST (lead) float64 0.005091 0.009096 0.008964 ... 0.01103 0.01261
Attributes:

prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_hindcast
number_of_initializations: 64
metric: mse
comparison: e2r
created: 2019-12-15 21:22:07,

'ERSST': <xarray.Dataset>
Dimensions: (lead: 10)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10
Data variables:

SST (lead) float64 0.003606 0.005651 0.006373 ... 0.007823 0.009009
Attributes:

prediction_skill: calculated by climpred https://climpred.re...
skill_calculated_by_function: compute_hindcast
number_of_initializations: 64
metric: mse
comparison: e2r
created: 2019-12-15 21:22:07}

One can also directly call individual references to compare to. Here we leverage xarray’s plotting method to com-
pute Mean Absolute Error and the Anomaly Correlation Coefficient for both our reference products, as well as the

30 Chapter 2. Installation

metrics.html
api.html#analysis-functions

climpred

equivalent metrics computed for persistence forecasts for each of those metrics.

[15]: import numpy as np

plt.style.use('ggplot')
plt.style.use('seaborn-talk')

RECON_COLOR = '#1b9e77'
OBS_COLOR = '#7570b3'

f, axs = plt.subplots(nrows=2, figsize=(8, 8), sharex=True)

for ax, metric in zip(axs.ravel(), ['mae', 'acc']):
handles = []
for product, color in zip(['reconstruction', 'ERSST'], [RECON_COLOR, OBS_COLOR]):

p1, = hindcast.compute_metric(product, metric=metric).SST.plot(ax=ax,
marker='o',
color=color,
label=product,
linewidth=2)

p2, = hindcast.compute_persistence(product, metric=metric).SST.plot(ax=ax,
color=color,
linestyle='--',
label=product +

→˓' persistence')
handles.append(p1)
handles.append(p2)

ax.set_title(metric.upper())

axs[0].set_ylabel('Mean Error [degC]')
axs[1].set_ylabel('Correlation Coefficient')
axs[0].set_xlabel('')
axs[1].set_xlabel('Lead Year')
axs[1].set_xticks(np.arange(10)+1)

matplotlib/xarray returning weirdness for the legend handles.
handles = [i.get_label() for i in handles]

a little trick to put the legend on the outside.
plt.legend(handles, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)

plt.suptitle('CESM Decadal Prediction Large Ensemble Global SSTs', fontsize=16)
plt.show()

2.6. PredictionEnsemble Objects 31

climpred

2.6.2 PerfectModelEnsemble

We’ll now play around a bit with the PerfectModelEnsemble object, using sample data from the MPI perfect
model configuration.

[16]: from climpred import PerfectModelEnsemble

[17]: ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D') # initialized ensemble from MPI
control = climpred.tutorial.load_dataset('MPI-control-1D') # base control run that
→˓initialized it

[18]: print(ds)

<xarray.Dataset>
Dimensions: (area: 3, init: 12, lead: 20, member: 10, period: 5)
Coordinates:

* lead (lead) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* period (period) object 'DJF' 'JJA' 'MAM' 'SON' 'ym'

* area (area) object 'global' 'North_Atlantic' 'North_Atlantic_SPG'

* init (init) int64 3014 3023 3045 3061 3124 ... 3175 3178 3228 3237 3257

* member (member) int64 0 1 2 3 4 5 6 7 8 9
Data variables:

tos (period, lead, area, init, member) float32 ...

(continues on next page)

32 Chapter 2. Installation

climpred

(continued from previous page)

sos (period, lead, area, init, member) float32 ...
AMO (period, lead, area, init, member) float32 ...

[19]: pm = climpred.PerfectModelEnsemble(ds)
pm = pm.add_control(control)
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (period, lead, area, init, member) float32 ...
sos (period, lead, area, init, member) float32 ...
AMO (period, lead, area, init, member) float32 ...

Control:
tos (period, time, area) float32 ...
sos (period, time, area) float32 ...
AMO (period, time, area) float32 ...

Uninitialized:
None

Our objects are carrying sea surface temperature (tos), sea surface salinity (sos), and the Atlantic Multidecadal
Oscillation index (AMO). Say we just want to look at skill metrics for temperature and salinity over the North Atlantic
in JJA. We can just call a few easy xarray commands to filter down our object.

[20]: pm = pm.drop('AMO').sel(area='North_Atlantic', period='JJA')

Now we can easily compute for a host of metrics. Here I just show a number of deterministic skill metrics comparing
all individual members to the initialized ensemble mean. See comparisons for more information on the comparison
keyword.

[21]: METRICS = ['mse', 'rmse', 'mae', 'acc',
'nmse', 'nrmse', 'nmae', 'msss']

result = []
for metric in METRICS:

result.append(pm.compute_metric(metric, comparison='m2e'))

result = xr.concat(result, 'metric')
result['metric'] = METRICS

Leverage the `xarray` plotting wrapper to plot all results at once.
result.to_array().plot(col='metric',

hue='variable',
col_wrap=4,
sharey=False,
sharex=True)

[21]: <xarray.plot.facetgrid.FacetGrid at 0x124b53e10>

2.6. PredictionEnsemble Objects 33

comparisons.html

climpred

It is useful to compare the initialized ensemble to an uninitialized run. See terminology for a description on “uninitial-
ized” simulations. This gives us information about how initializations lead to enhanced predictability over knowledge
of external forcing, whereas a comparison to persistence just tells us how well a dynamical forecast simulation does
in comparison to a naive method. We can use the generate_uninitialized() method to bootstrap the control
run and create a pseudo-ensemble that approximates what an uninitialized ensemble would look like.

[22]: pm = pm.generate_uninitialized()
print(pm)

<climpred.PerfectModelEnsemble>
Initialized Ensemble:

tos (lead, init, member) float32 ...
sos (lead, init, member) float32 ...

Control:
tos (time) float32 ...
sos (time) float32 ...

Uninitialized:
tos (init, member, lead) float32 13.856491 13.286671 ... 13.289608
sos (init, member, lead) float32 33.210403 33.172962 ... 33.176933

[23]: pm = pm.drop('tos') # Just assess for salinity.

Here I plot the ACC for the initialized, uninitialized, and persistence forecasts for North Atlantic sea surface salinity
in JJA. I add circles to the lines if the correlations are statistically significant for 𝑝 <= 0.05.

[24]: # ACC for initialized ensemble
acc = pm.compute_metric('acc')
acc.sos.plot(color='red')
acc.where(pm.compute_metric('p_pval') <= 0.05).sos.plot(marker='o', linestyle='None',
→˓color='red', label='initialized')

ACC for 'uninitialized' ensemble
acc = pm.compute_uninitialized('acc')
acc.sos.plot(color='gray')
acc.where(pm.compute_uninitialized('p_pval') <= 0.05).sos.plot(marker='o', linestyle=
→˓'None', color='gray', label='uninitialized')

ACC for persistence forecast
(continues on next page)

34 Chapter 2. Installation

terminology.html

climpred

(continued from previous page)

acc = pm.compute_persistence('acc')
acc.sos.plot(color='k', linestyle='--')
acc.where(pm.compute_persistence('p_pval') <= 0.05).sos.plot(marker='o', linestyle=
→˓'None', color='k', label='persistence')

plt.legend()

[24]: <matplotlib.legend.Legend at 0x124cee588>

2.7 Metrics

All high-level functions have an optional metric argument that can be called to determine which metric is used in
computing predictability (potential predictability or prediction skill).

Note: We use the phrase ‘observations’ o here to refer to the ‘truth’ data to which we compare the forecast f. These
metrics can also be applied in reference to a control simulation, reconstruction, observations, etc. This would just
change the resulting score from referencing skill to referencing potential predictability.

Internally, all metric functions require forecast and reference as inputs. The dimension dim is set by
compute_hindcast() or compute_perfect_model() to specify over which dimensions the metric is
applied. See Comparisons.

2.7. Metrics 35

climpred

2.7.1 Deterministic

Deterministic metrics quantify the level to which the forecast predicts the observations. These metrics are just a special
case of probabilistic metrics where a value of 100% is assigned to the forecasted value [Jolliffe2011].

Core Metrics

Pearson Anomaly Correlation Coefficient (ACC)

keyword: 'pearson_r', 'pr', 'pacc', 'acc'

A measure of the linear association between the forecast and observations that is independent of the mean and variance
of the individual distributions [Jolliffe2011]. climpred uses the Pearson correlation coefficient.

climpred.metrics._pearson_r(forecast, reference, dim=None, **metric_kwargs)
Pearson’s Anomaly Correlation Coefficient (ACC).

𝐴𝐶𝐶 =
𝑐𝑜𝑣(𝑓, 𝑜)

𝜎𝑓 · 𝜎𝑜

Note: Use metric pearson_r_p_value to get the corresponding pvalue.

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna, see xskillscore.pearson_r

Range:

• perfect: 1

• min: -1

See also:

• xskillscore.pearson_r

• xskillscore.pearson_r_p_value

Spearman Anomaly Correlation Coefficient (SACC)

keyword: 'spearman_r', 'sacc', 'sr'

A measure of how well the relationship between two variables can be described using a monotonic function.

climpred.metrics._spearman_r(forecast, reference, dim=None, **metric_kwargs)
Spearman’s Anomaly Correlation Coefficient (SACC).

𝑆𝐴𝐶𝐶 = 𝐴𝐶𝐶(𝑟𝑎𝑛𝑘𝑒𝑑(𝑓), 𝑟𝑎𝑛𝑘𝑒𝑑(𝑜))

36 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str

climpred

Note: Use metric spearman_r_p_value to get the corresponding pvalue.

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna, see xskillscore.spearman_r

Range:

• perfect: 1

• min: -1

See also:

• xskillscore.spearman_r

• xskillscore.spearman_r_p_value

Mean Squared Error (MSE)

keyword: 'mse'

The average of the squared difference between forecasts and observations. This incorporates both the variance and
bias of the estimator.

climpred.metrics._mse(forecast, reference, dim=None, **metric_kwargs)
Mean Sqaure Error (MSE).

𝑀𝑆𝐸 = (𝑓 − 𝑜)2

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna, see xskillscore.mse

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.mse

2.7. Metrics 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

climpred

Root Mean Square Error (RMSE)

keyword: 'rmse'

The square root of the average of the squared differences between forecasts and observations [Jolliffe2011]. It puts a
greater influence on large errors than small errors, which makes this a good choice if large errors are undesirable or
one wants to be a more conservative forecaster.

climpred.metrics._rmse(forecast, reference, dim=None, **metric_kwargs)
Root Mean Sqaure Error (RMSE).

𝑅𝑀𝑆𝐸 =

√︁
(𝑓 − 𝑜)2

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna, see xskillscore.rmse

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.rmse

Mean Absolute Error (MAE)

keyword: 'mae'

The average of the absolute differences between forecasts and observations [Jolliffe2011]. A more robust measure of
forecast accuracy than root mean square error or mean square error which is sensitive to large outlier forecast errors
[EOS].

climpred.metrics._mae(forecast, reference, dim=None, **metric_kwargs)
Mean Absolute Error (MAE).

𝑀𝐴𝐸 = |𝑓 − 𝑜|

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna, see xskillscore.mae

Range:

• perfect: 0

38 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

climpred

• min: 0

• max: ∞

See also:

• xskillscore.mae

Median Absolute Deviation (MAD)

keyword: 'mad'

The median of the absolute differences between forecasts and observations.

climpred.metrics._mad(forecast, reference, dim=None, **metric_kwargs)
Median Absolute Deviation (MAD).

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑓 − 𝑜|)

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna, see xskillscore.mad

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.mad

Derived Metrics

Distance-based metrics like mse can be normalized to 1. The normalization factor depends on the comparison type
choosen, eg. the distance between an ensemble member and the ensemble mean is half the distance of an ensemble
member with other ensemble members. (see climpred.metrics._get_norm_factor()).

Normalized Mean Square Error (NMSE)

keyword: 'nmse','nev'

climpred.metrics._nmse(forecast, reference, dim=None, **metric_kwargs)
Normalized MSE (NMSE) also known as Normalized Ensemble Variance (NEV).

𝑁𝑀𝑆𝐸 = 𝑁𝐸𝑉 =
𝑀𝑆𝐸

𝜎2
𝑜 · 𝑓𝑎𝑐

Parameters

2.7. Metrics 39

https://docs.python.org/3/library/stdtypes.html#str

climpred

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor fac, see
climpred.metrics._get_norm_factor() (internally required to be added via
**metric_kwargs)

• metric_kwargs (*) – (optional) weights, skipna, see xskillscore.mse

Range:

• 0: perfect forecast: 0

• 0 - 1: better than climatology forecast

• > 1: worse than climatology forecast

References

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variabil-
ity.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

Normalized Mean Absolute Error (NMAE)

keyword: 'nmae'

climpred.metrics._nmae(forecast, reference, dim=None, **metric_kwargs)
Normalized Ensemble Mean Absolute Error metric.

𝑁𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝜎𝑜 · 𝑓𝑎𝑐

Parameters

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor fac, see
climpred.metrics._get_norm_factor() (internally required to be added via
**metric_kwargs)

• metric_kwargs (*) – (optional) weights, skipna, see xskillscore.mae

Range:

• 0: perfect forecast: 0

• 0 - 1: better than climatology forecast

• > 1: worse than climatology forecast

References

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variabil-
ity.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

40 Chapter 2. Installation

https://doi.org/10/ch4kc4
https://doi.org/10/ch4kc4

climpred

Normalized Root Mean Square Error (NRMSE)

keyword: 'nrmse'

climpred.metrics._nrmse(forecast, reference, dim=None, **metric_kwargs)
Normalized Root Mean Square Error (NRMSE) metric.

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎𝑜 ·
√
𝑓𝑎𝑐

=

√︃
𝑀𝑆𝐸

𝜎2
𝑜 · 𝑓𝑎𝑐

Parameters

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor fac, see
climpred.metrics._get_norm_factor() (internally required to be added via
**metric_kwargs)

• metric_kwargs (*) – (optional) weights, skipna, see xskillscore.rmse

Range:

• 0: perfect forecast

• 0 - 1: better than climatology forecast

• > 1: worse than climatology forecast

References

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and
Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.”
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

• Hawkins, Ed, Steffen Tietsche, Jonathan J. Day, Nathanael Melia, Keith Haines, and Sarah Keeley. “As-
pects of Designing and Evaluating Seasonal-to-Interannual Arctic Sea-Ice Prediction Systems.” Quar-
terly Journal of the Royal Meteorological Society 142, no. 695 (January 1, 2016): 672–83. https:
//doi.org/10/gfb3pn.

Mean Square Skill Score (MSSS)

keyword: 'msss','ppp'

climpred.metrics._ppp(forecast, reference, dim=None, **metric_kwargs)
Prognostic Potential Predictability (PPP) metric.

𝑃𝑃𝑃 = 1− 𝑀𝑆𝐸

𝜎2
𝑟𝑒𝑓 · 𝑓𝑎𝑐

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

2.7. Metrics 41

https://doi.org/10/gd7hfq
https://doi.org/10/gfb3pn
https://doi.org/10/gfb3pn
https://docs.python.org/3/library/stdtypes.html#str

climpred

• comparison (str) – name comparison needed for normalization factor fac, climpred.
metrics._get_norm_factor() (internally required to be added via **met-
ric_kwargs)

• metric_kwargs – (optional) weights, skipna, see xskillscore.mse

Range:

• 1: perfect forecast

• positive: better than climatology forecast

• negative: worse than climatology forecast

References

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variabil-
ity.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

• Pohlmann, Holger, Michael Botzet, Mojib Latif, Andreas Roesch, Martin Wild, and Peter Tschuck. “Es-
timating the Decadal Predictability of a Coupled AOGCM.” Journal of Climate 17, no. 22 (November 1,
2004): 4463–72. https://doi.org/10/d2qf62.

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and
Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

Mean Absolute Percentage Error (MAPE)

keyword: 'mape'

The mean of the absolute differences between forecasts and observations normalized by observations.

climpred.metrics._mape(forecast, reference, dim=None, **metric_kwargs)

Mean Absolute Percentage Error (MAPE).

𝑀𝐴𝑃𝐸 = 𝑀𝐴𝑃𝐸 = 1/𝑛
∑︁

rac{|f-o|}{|o|}

Args: forecast (xarray object): forecast reference (xarray object): reference dim (str): dimension(s)
to perform metric over.

Automatically set by compute_.

metric_kwargs: (optional) weights, skipna, see xskillscore.mape

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.mape

42 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10/ch4kc4
https://doi.org/10/d2qf62
https://doi.org/10/gd7hfq

climpred

Symmetric Mean Absolute Percentage Error (sMAPE)

keyword: 'smape'

The mean of the absolute differences between forecasts and observations normalized by their sum.

climpred.metrics._smape(forecast, reference, dim=None, **metric_kwargs)

symmetric Mean Absolute Percentage Error (sMAPE).

𝑠𝑀𝐴𝑃𝐸 = 1/𝑛
∑︁

rac{|f-o|}{|f|+|o|}

Args: forecast (xarray object): forecast reference (xarray object): reference dim (str): dimension(s)
to perform metric over.

Automatically set by compute_.

metric_kwargs: (optional) weights, skipna, see xskillscore.smape

Range:

• perfect: 0

• min: 0

• max: 1

See also:

• xskillscore.smape

Unbiased ACC

keyword: 'uacc'

climpred.metrics._uacc(forecast, reference, dim=None, **metric_kwargs)
Bushuk’s unbiased ACC (uACC).

𝑢𝐴𝐶𝐶 =
√
𝑃𝑃𝑃 =

√
𝑀𝑆𝑆𝑆

Parameters

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor fac, see
climpred.metrics._get_norm_factor() (internally required to be added via
**metric_kwargs)

• metric_kwargs (*) – (optional) weights, skipna, see xskillscore.mse

Range:

• 1: perfect

• 0 - 1: better than climatology

2.7. Metrics 43

climpred

References

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and
Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

Murphy decomposition metrics

[Murphy1988] relates the MSSS with ACC and unconditional bias.

Standard Ratio

keyword: 'std_ratio'

climpred.metrics._std_ratio(forecast, reference, dim=None, **metric_kwargs)
Ratio of standard deviations of reference over forecast.

std ratio =
𝜎𝑜

𝜎𝑓

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

References

• https://www-miklip.dkrz.de/about/murcss/

Unconditional Bias

keyword: 'bias', 'unconditional_bias', 'u_b'

climpred.metrics._bias(forecast, reference, dim=None, **metric_kwargs)
Unconditional bias.

𝑏𝑖𝑎𝑠 = 𝑓 − 𝑜

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

Range:

• pos: positive bias

• neg: negative bias

• perfect: 0

44 Chapter 2. Installation

https://doi.org/10/gd7hfq
https://docs.python.org/3/library/stdtypes.html#str
https://www-miklip.dkrz.de/about/murcss/
https://docs.python.org/3/library/stdtypes.html#str

climpred

References

• https://www.cawcr.gov.au/projects/verification/

• https://www-miklip.dkrz.de/about/murcss/

Bias Slope

keyword: 'bias_slope'

climpred.metrics._bias_slope(forecast, reference, dim=None, **metric_kwargs)
Bias slope between reference and forecast standard deviations.

bias slope = 𝑟𝑓𝑜 · std ratio

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

References

• https://www-miklip.dkrz.de/about/murcss/

Conditional Bias

keyword: 'conditional_bias', c_b'

climpred.metrics._conditional_bias(forecast, reference, dim=None, **metric_kwargs)
Conditional bias between forecast and reference.

conditional bias = 𝑟𝑓𝑜 −
𝜎𝑓

𝜎𝑜

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

References

• https://www-miklip.dkrz.de/about/murcss/

Murphy’s Mean Square Skill Score

keyword: 'msss_murphy'

2.7. Metrics 45

https://www.cawcr.gov.au/projects/verification/
https://www-miklip.dkrz.de/about/murcss/
https://docs.python.org/3/library/stdtypes.html#str
https://www-miklip.dkrz.de/about/murcss/
https://docs.python.org/3/library/stdtypes.html#str
https://www-miklip.dkrz.de/about/murcss/

climpred

climpred.metrics._msss_murphy(forecast, reference, dim=None, **metric_kwargs)
Murphy’s Mean Square Skill Score (MSSS).

𝑀𝑆𝑆𝑆𝑀𝑢𝑟𝑝ℎ𝑦 = 𝑟2𝑓𝑜 − [conditional bias]2 − [
(unconditional) bias

𝜎𝑜
]2

Parameters

• forecast (xarray object) – forecast

• reference (xarray object) – reference

• dim (str) – dimension(s) to perform metric over. Automatically set by compute_.

• metric_kwargs – (optional) weights, skipna

References

• https://www-miklip.dkrz.de/about/murcss/

• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation
Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https://doi.org/10/
fc7mxd.

2.7.2 Probabilistic

keyword: 'crps'

climpred.metrics._crps(forecast, reference, **metric_kwargs)
Continuous Ranked Probability Score (CRPS) is the probabilistic MSE.

Parameters

• forecast (*) – forecast with member dim

• reference (*) – references without member dim

• metric_kwargs (*) – weights, see properscoring.crps_ensemble

Range:

• perfect: 0

• min: 0

• max: ∞

References

• Matheson, James E., and Robert L. Winkler. “Scoring Rules for Continuous Probability Distributions.”
Management Science 22, no. 10 (June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.

See also:

• properscoring.crps_ensemble

• xskillscore.crps_ensemble

keyword: 'crpss'

46 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://www-miklip.dkrz.de/about/murcss/
https://doi.org/10/fc7mxd
https://doi.org/10/fc7mxd
https://doi.org/10/cwwt4g

climpred

climpred.metrics._crpss(forecast, reference, **metric_kwargs)
Continuous Ranked Probability Skill Score

Note: When assuming a gaussian distribution of forecasts, use default gaussian=True. If not gaussian, you may
specify the distribution type, xmin/xmax/tolerance for integration (see xskillscore.crps_quadrature).

𝐶𝑅𝑃𝑆𝑆 = 1− 𝐶𝑅𝑃𝑆𝑖𝑛𝑖𝑡

𝐶𝑅𝑃𝑆𝑐𝑙𝑖𝑚

Parameters

• forecast (*) – forecast with member dim

• reference (*) – references without member dim

• gaussian (*) – Assuming gaussian distribution for baseline skill. Default: True (optional)

• cdf_or_dist (*) – distribution to assume if not gaussian. default: scipy.stats.norm

• xmin, xmax, tol (*) – only relevant if not gaussian (see xskillscore.crps_quadrature)

Range:

• perfect: 1

• pos: better than climatology forecast

• neg: worse than climatology forecast

References

• Matheson, James E., and Robert L. Winkler. “Scoring Rules for Continuous Probability Distributions.”
Management Science 22, no. 10 (June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.

• Gneiting, Tilmann, and Adrian E Raftery. “Strictly Proper Scoring Rules, Prediction, and Estimation.”
Journal of the American Statistical Association 102, no. 477 (March 1, 2007): 359–78. https://doi.org/10/
c6758w.

Example

>>> compute_perfect_model(ds, control, metric='crpss')
>>> compute_perfect_model(ds, control, metric='crpss', gaussian=False,

cdf_or_dist=scipy.stats.norm, xminimum=-10,
xmaximum=10, tol=1e-6)

See also:

• properscoring.crps_ensemble

• xskillscore.crps_ensemble

keyword: 'crpss_es'

2.7. Metrics 47

https://doi.org/10/cwwt4g
https://doi.org/10/c6758w
https://doi.org/10/c6758w

climpred

climpred.metrics._crpss_es(forecast, reference, **metric_kwargs)
CRPSS Ensemble Spread.

𝐶𝑅𝑃𝑆𝑆 = 1−
𝐶𝑅𝑃𝑆(𝜎2

𝑓)

𝐶𝑅𝑃𝑆(𝜎2
𝑜

))

Parameters

• forecast (*) – forecast with member dim

• reference (*) – references without member dim

• metric_kwargs (*) – weights, skipna used for mse

References

• Kadow, Christopher, Sebastian Illing, Oliver Kunst, Henning W. Rust, Holger Pohlmann, Wolfgang A.
Müller, and Ulrich Cubasch. “Evaluation of Forecasts by Accuracy and Spread in the MiKlip Decadal
Climate Prediction System.” Meteorologische Zeitschrift, December 21, 2016, 631–43. https://doi.org/10/
f9jrhw.

Range:

• perfect: 0

• else: negative

keyword: 'brier_score', 'brier', 'bs'

climpred.metrics._brier_score(forecast, reference, **metric_kwargs)
Brier score for forecasts on binary reference.

..math: BS(f, o) = (f - o)^2

Parameters

• forecast (*) – forecast with member dim

• reference (*) – references without member dim

• func (*) – function to be applied to reference and forecasts and then mean(‘member’) to
get forecasts and reference in interval [0,1]. (required to be added via **metric_kwargs)

Reference:

• Brier, Glenn W. “VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF

PROBABILITY.” Monthly Weather Review 78, no. 1 (1950). https://doi.org/10.1175/
1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

Example

>>> def pos(x): return x > 0
>>> compute_perfect_model(ds, control, metric='brier_score', func=pos)

See also:

• properscoring.brier_score

48 Chapter 2. Installation

https://doi.org/10/f9jrhw
https://doi.org/10/f9jrhw
https://doi.org/10.1175/1520-0493(1950
https://doi.org/10.1175/1520-0493(1950

climpred

• xskillscore.brier_score

keyword: 'threshold_brier_score', 'tbs'

climpred.metrics._threshold_brier_score(forecast, reference, **metric_kwargs)
Brier scores of an ensemble for exceeding given thresholds. Provide threshold via metric_kwargs.

𝐶𝑅𝑃𝑆(𝐹, 𝑥) =

∫︁
𝑧

𝐵𝑆(𝐹 (𝑧), 𝐻(𝑧 − 𝑥))𝑑𝑧

Range:

• perfect: 0

• min: 0

• max: 1

Parameters

• forecast (*) – forecast with member dim

• reference (*) – references without member dim

• threshold (*) – Threshold to check exceedance, see properscor-
ing.threshold_brier_score (required to be added via **metric_kwargs)

References

• Brier, Glenn W. “VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF

PROBABILITY.” Monthly Weather Review 78, no. 1 (1950). https://doi.org/10.1175/
1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

Example

>>> compute_perfect_model(ds, control,
metric='threshold_brier_score', threshold=.5)

See also:

• properscoring.threshold_brier_score

• xskillscore.threshold_brier_score

2.7.3 User-defined metrics

You can also construct your own metrics via the climpred.metrics.Metric class.

Metric(name, function, positive, . . . [, . . .]) Master class for all metrics.

First, write your own metric function, similar to the existing ones with required arguments forecast, reference,
dim=None, and **metric_kwargs:

from climpred.metrics import Metric

(continues on next page)

2.7. Metrics 49

https://doi.org/10.1175/1520-0493(1950
https://doi.org/10.1175/1520-0493(1950

climpred

(continued from previous page)

def _my_msle(forecast, reference, dim=None, **metric_kwargs):
"""Mean squared logarithmic error (MSLE).
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-

→˓model/loss-functions/mean-squared-logarithmic-error."""
return ((np.log(forecast + 1) + np.log(reference + 1)) ** 2).mean(dim)

Then initialize this metric function with climpred.metrics.Metric:

_my_msle = Metric(
name='my_msle',
function=_my_msle,
probabilistic=False,
positive=False,
unit_power=0,
)

Finally, compute skill based on your own metric:

skill = compute_perfect_model(ds, control, metric='rmse', comparison=_my_msle)

Once you come up with an useful metric for your problem, consider contributing this metric to climpred, so all users
can benefit from your metric, see contributing.

2.7.4 References

2.8 Comparisons

Forecast skill is always evaluated against a reference for verification. In ESM-based predictions, it is common to
compare the ensemble mean forecast against the reference.

In hindcast ensembles compute_hindcast(), this ensemble mean forecast (comparison='e2r') is ex-
pected to perform better than individual ensemble members (comparison='m2r') as the chaotic compo-
nent of forecasts is expected to be suppressed by this averaging, while the memory of the system sustains.
[Boer2016] HindcastEnsemble skill is computed by default as the ensemble mean forecast against the reference
(comparison='e2r').

In perfect-model frameworks compute_perfect_model(), there are even more ways of comparisons.
[Seferian2018] shows comparison of the ensemble members against the control run (comparison='m2c') and
ensemble members against all other ensemble members (comparison='m2m'). Furthermore, using the en-
semble mean forecast can be also verified against one control member (comparison='e2c') or all members
(comparison='m2e') as done in [Griffies1997]. Perfect-model framework comparison defaults to the ensemble
mean forecast verified against each member in turns (comparison='m2e').

These different comparisons demand for a normalization factor to arrive at a normalized skill of 1, when skill saturation
is reached (ref: metrics).

While HindcastEnsemble skill is computed over all initializations init of the hindcast, the resulting skill is a mean
forecast skill over all initializations. PerfectModelEnsemble skill is computed over a supervector comprised of all
initializations and members, which allows the computation of the ACC-based skill [Bushuk2018], but also returns a
mean forecast skill over all initializations. The supervector approach shown in [Bushuk2018] and just calculating a
distance-based metric like rmse over the member dimension as in [Griffies1997] yield very similar results.

50 Chapter 2. Installation

climpred

2.8.1 Compute over dimension

The optional argument dim defines over which dimension a metric is computed. We can apply a metric over
dim from ['init', 'member', ['member', 'init']] in compute_perfect_model() and ['init',
'member'] in compute_hindcast(). The resulting skill is then reduced by this dim. Therefore, applying a
metric over dim='member' creates a skill for all initializations individually. This can show the initial conditions
dependence of skill. Likewise when computing skill over 'init', we get skill for each member. This dim argument
is different from the comparison argument which just specifies how forecast and reference are defined.
However, this above logic applies to deterministic metrics. Probabilistic metrics need to be applied to the member di-
mension and comparison from ['m2c', 'm2m'] in compute_perfect_model() and 'm2r' comparison in
compute_hindcast(). Using a probabilistic metric automatically switches internally to using dim='member'.

2.8.2 HindcastEnsemble

keyword: 'e2r'

_e2r(ds, reference[, stack_dims]) Compare the ensemble mean forecast to a reference in
HindcastEnsemble.

keyword: 'm2r'

_m2r(ds, reference[, stack_dims]) Compares each member individually to a reference in
HindcastEnsemble.

2.8.3 PerfectModelEnsemble

keyword: 'm2e'

_m2e(ds[, stack_dims]) Compare all members to ensemble mean while leaving
out the reference in

keyword: 'm2c'

_m2c(ds[, control_member, stack_dims]) Compare all other members forecasts to control member
verification.

keyword: 'm2m'

_m2m(ds[, stack_dims]) Compare all members to all others in turn while leaving
out the verification member.

keyword: 'e2c'

_e2c(ds[, control_member, stack_dims]) Compare ensemble mean forecast to control member
verification.

2.8. Comparisons 51

climpred

2.8.4 User-defined comparisons

You can also construct your own comparisons via the Comparison class.

Comparison(name, function, hindcast, . . . [, . . .]) Master class for all comparisons.

First, write your own comparison function, similar to the existing ones. If a comparison should also be used for
probabilistic metrics, use stack_dims to return forecast with member dimension and reference without.
For deterministic metric, return forecast and reference with identical dimensions:

from climpred.comparisons import Comparison, _drop_members

def _my_m2median_comparison(ds, stack_dims=True):
"""Identical to m2e but median."""
reference_list = []
forecast_list = []
supervector_dim = 'member'
for m in ds.member.values:

forecast = _drop_members(ds, rmd_member=[m]).median('member')
reference = ds.sel(member=m).squeeze()
forecast_list.append(forecast)
reference_list.append(reference)

reference = xr.concat(reference_list, supervector_dim)
forecast = xr.concat(forecast_list, supervector_dim)
forecast[supervector_dim] = np.arange(forecast[supervector_dim].size)
reference[supervector_dim] = np.arange(reference[supervector_dim].size)
return forecast, reference

Then initialize this comparison function with Comparison:

__my_m2median_comparison = Comparison(
name='m2me',
function=_my_m2median_comparison,
probabilistic=False,
hindcast=False)

Finally, compute skill based on your own comparison:

skill = compute_perfect_model(ds, control, metric='rmse', comparison=__my_m2median_
→˓comparison)

Once you come up with an useful comparison for your problem, consider contributing this comparison to climpred,
so all users can benefit from your comparison, see contributing.

2.8.5 References

2.9 Prediction Terminology

Terminology is often confusing and highly variable amongst those that make predictions in the geoscience community.
Here we define some common terms in climate prediction and how we use them in climpred.

2.9.1 Simulation Design

52 Chapter 2. Installation

contributing.html

climpred

Initialized Ensemble

Perfect Model Experiment: m ensemble members are initialized from a control simulation at n randomly chosen
initialization dates and integrated for l lead years [Griffies1997] (PerfectModelEnsemble).

Hindcast Ensemble: m ensemble members are initialized from a reference simulation (generally a reconstruction from
reanalysis) at n initialization dates and integrated for l lead years [Boer2016] (HindcastEnsemble).

Uninitialized Ensemble

In this framework, an uninitialized ensemble is one that is generated by perturbing initial conditions only at one point
in the historical run. These are generated via micro (round-off error perturbations) or macro (starting from completely
different restart files) methods. Uninitialized ensembles are used to approximate the magnitude of internal climate
variability and to confidently extract the forced response (ensemble mean) in the climate system.

In climpred, we use uninitialized ensembles as a baseline for how important (reoccurring) initializations are for
lending predictability to the system. Some modeling centers (such as NCAR) provide a dynamical uninitialized
ensemble (the CESM Large Ensemble) along with their initialized prediction system (the CESM Decadal Prediction
Large Ensemble). If this isn’t available, one can approximate the unintiailized response by bootstrapping a control
simulation.

Reconstruction:

Reconstruction/Assimilation: A “reconstruction” is a model solution that uses observations in some capacity to ap-
proximate historical conditions. This could be done via a forced simulation, such as an OMIP run that uses a dynamical
ocean/sea ice core with reanalysis forcing from atmospheric winds. This could also be a fully data assimilative model,
which assimilates observations into the model solution.

2.9.2 Predictability vs. Prediction skill

(Potential) Predictability: This characterizes the “ability to be predicted” rather than the current “ability to predict.”
One acquires this by computing a metric (like the anomaly correlation coefficient (ACC)) between the prediction
ensemble and a verification member (in a perfect-model setup) or the reconstruction that initialized it (in a hindcast
setup) [Meehl2013].

(Prediction) Skill: This characterizes the current ability of the ensemble forecasting system to predict the real
world. This is derived by computing the ACC between the prediction ensemble and observations of the real world
[Meehl2013].

2.9.3 Forecasting

Hindcast: Retrospective forecasts of the past initialized from a reconstruction integrated under external forcing
[Boer2016].

Prediction: Forecasts initialized from a reconstruction integrated into the future with external forcing [Boer2016].

Projection An estimate of the future climate that is dependent on the externally forced climate response, such as
anthropogenic greenhouse gases, aerosols, and volcanic eruptions [Meehl2013].

2.9. Prediction Terminology 53

climpred

2.9.4 References

2.10 Baseline Forecasts

To quantify the quality of an initialized forecast, it is useful to judge it against some simple baseline forecast.
climpred currently supports a persistence forecast, but future releases will allow computation of other baseline
forecasts. Consider opening a Pull Request to get it implemented more quickly.

Persistence Forecast: Whatever is observed at the time of initialization is forecasted to persist into the fore-
cast period [Jolliffe2012]. You can compute this directly via compute_persistence() or as a method of
HindcastEnsemble and PerfectModelEnsemble.

Damped Persistence Forecast: (Not Implemented) The amplitudes of the anomalies reduce in time exponentially at
a time scale of the local autocorrelation [Yuan2016].

𝑣𝑑𝑝(𝑡) = 𝑣(0)𝑒−𝛼𝑡

Climatology: (Not Implemented) The average values at the temporal forecast resolution (e.g., annual, monthly) over
some long period, which is usually 30 years [Jolliffe2012].

Random Mechanism: (Not Implemented) A probability distribution is assigned to the possible range of the vari-
able being forecasted, and a sequence of forecasts is produced by taking a sequence of independent values from
that distribution [Jolliffe2012]. This would be similar to computing an uninitialized forecast, using climpred’s
compute_uninitialized() function.

2.10.1 References

Help & Reference

• API Reference

• What’s New

• Helpful Links

• Publications Using climpred

• Contribution Guide

• Release Procedure

• Contributors

2.11 API Reference

This page provides an auto-generated summary of climpred’s API. For more details and examples, refer to the relevant
chapters in the main part of the documentation.

2.11.1 High-Level Classes

A primary feature of climpred is our prediction ensemble objects, HindcastEnsemble and
PerfectModelEnsemble. Users can append their initialized ensemble to these classes, as well as an arbi-
trary number of references (assimilations, reconstructions, observations), control runs, and uninitialized ensembles.

54 Chapter 2. Installation

contributing.html

climpred

HindcastEnsemble

A HindcastEnsemble is a prediction ensemble that is initialized off of some form of observations (an assimilation,
renanalysis, etc.). Thus, it is anticipated that forecasts are verified against observation-like references. Read more
about the terminology here.

HindcastEnsemble(xobj) An object for climate prediction ensembles initialized
by a data-like product.

climpred.classes.HindcastEnsemble

class climpred.classes.HindcastEnsemble(xobj)
An object for climate prediction ensembles initialized by a data-like product.

HindcastEnsemble is a sub-class of PredictionEnsemble. It tracks all simulations/observations associated with
the prediction ensemble for easy computation across multiple variables and products.

This object is built on xarray and thus requires the input object to be an xarray Dataset or DataArray.

__init__(xobj)
Create a HindcastEnsemble object by inputting output from a prediction ensemble in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

reference
Dictionary of various reference observations/simulations to associate with the decadal prediction en-
semble.

uninitialized
Dictionary of companion (or bootstrapped) uninitialized ensemble run.

Methods

__init__(xobj) Create a HindcastEnsemble object by inputting out-
put from a prediction ensemble in xarray format.

add_reference(xobj, name) Add a reference product for comparison to the ini-
tialized ensemble.

add_uninitialized(xobj) Add a companion uninitialized ensemble for com-
parison to references.

compute_metric([refname, metric, . . .]) Compares the initialized ensemble to a given refer-
ence.

compute_persistence([refname, metric,
max_dof])

Compute a simple persistence forecast for a refer-
ence.

compute_uninitialized([refname, metric,
. . .])

Compares the uninitialized ensemble to a given ref-
erence.

get_initialized() Returns the xarray dataset for the initialized ensem-
ble.

get_reference([name]) Returns the given reference(s).
get_uninitialized() Returns the xarray dataset for the uninitialized en-

semble.
smooth([smooth_kws]) Smooth all entries of PredictionEnsemble in the

same manner to be able to still calculate prediction
skill afterwards.

2.11. API Reference 55

terminology.html

climpred

Add and Retrieve Datasets

HindcastEnsemble.__init__(xobj) Create a HindcastEnsemble object by inputting output
from a prediction ensemble in xarray format.

HindcastEnsemble.add_reference(xobj,
name)

Add a reference product for comparison to the initial-
ized ensemble.

HindcastEnsemble.
add_uninitialized(xobj)

Add a companion uninitialized ensemble for compari-
son to references.

HindcastEnsemble.get_initialized() Returns the xarray dataset for the initialized ensemble.
HindcastEnsemble.get_reference([name]) Returns the given reference(s).
HindcastEnsemble.get_uninitialized() Returns the xarray dataset for the uninitialized ensem-

ble.

climpred.classes.HindcastEnsemble.__init__

HindcastEnsemble.__init__(xobj)
Create a HindcastEnsemble object by inputting output from a prediction ensemble in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

reference
Dictionary of various reference observations/simulations to associate with the decadal prediction ensem-
ble.

climpred.classes.uninitialized
Dictionary of companion (or bootstrapped) uninitialized ensemble run.

climpred.classes.HindcastEnsemble.add_reference

HindcastEnsemble.add_reference(xobj, name)
Add a reference product for comparison to the initialized ensemble.

Parameters

• xobj (xarray object) – Dataset/DataArray being appended to the HindcastEnsemble
object.

• name (str) – Name of this object (e.g., “reconstruction”)

climpred.classes.HindcastEnsemble.add_uninitialized

HindcastEnsemble.add_uninitialized(xobj)
Add a companion uninitialized ensemble for comparison to references.

Parameters xobj (xarray object) – Dataset/DataArray of the uninitialzed ensemble.

climpred.classes.HindcastEnsemble.get_initialized

HindcastEnsemble.get_initialized()
Returns the xarray dataset for the initialized ensemble.

56 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str

climpred

climpred.classes.HindcastEnsemble.get_reference

HindcastEnsemble.get_reference(name=None)
Returns the given reference(s).

Parameters name (str) – Name of the reference to return (optional)

Returns Dictionary of xarray datasets (if name is None) or single xarray dataset.

climpred.classes.HindcastEnsemble.get_uninitialized

HindcastEnsemble.get_uninitialized()
Returns the xarray dataset for the uninitialized ensemble.

Analysis Functions

HindcastEnsemble.
compute_metric([refname, . . .])

Compares the initialized ensemble to a given reference.

HindcastEnsemble.
compute_persistence([. . .])

Compute a simple persistence forecast for a reference.

HindcastEnsemble.
compute_uninitialized([. . .])

Compares the uninitialized ensemble to a given refer-
ence.

climpred.classes.HindcastEnsemble.compute_metric

HindcastEnsemble.compute_metric(refname=None, metric=’pearson_r’, comparison=’e2r’,
max_dof=False)

Compares the initialized ensemble to a given reference.

This will automatically run the comparison against all shared variables between the initialized ensemble and
reference.

Parameters

• refname (str) – Name of reference to compare to. If None, compare to all references.

• metric (str, default 'pearson_r') – Metric to apply in the comparison.

• comparison (str, default 'e2r') – How to compare to the reference. (‘e2r’ for
ensemble mean to reference. ‘m2r’ for each individual member to reference)

• max_dof (bool, default False) – If True, maximize the degrees of freedom for
each lag calculation.

Returns Dataset of comparison results (if comparing to one reference), or dictionary of Datasets
with keys corresponding to reference name.

climpred.classes.HindcastEnsemble.compute_persistence

HindcastEnsemble.compute_persistence(refname=None, metric=’pearson_r’, max_dof=False)
Compute a simple persistence forecast for a reference.

This simply applies some metric between the reference and itself out to some lag (i.e., an ACF in the case of
pearson r).

2.11. API Reference 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

climpred

Parameters

• refname (str, default None) – Name of reference to compute the persistence fore-
cast for. If None, compute for all references.

• metric (str, default 'pearson_r') – Metric to apply to the persistence forecast.

• max_dof (bool, default False) – If True, maximize the degrees of freedom for
each lag calculation.

Returns Dataset of persistence forecast results (if refname is declared), or dictionary of Datasets
with keys corresponding to reference name.

Reference:

• Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug. Empirical methods in short-term
climate prediction. Oxford University Press, 2007.

climpred.classes.HindcastEnsemble.compute_uninitialized

HindcastEnsemble.compute_uninitialized(refname=None, metric=’pearson_r’, compari-
son=’e2r’)

Compares the uninitialized ensemble to a given reference.

This will automatically run the comparison against all shared variables between the initialized ensemble and
reference.

Parameters

• refname (str) – Name of reference to compare to. If None, compare to all references.

• metric (str, default 'pearson_r') – Metric to apply in the comparison.

• comparison (str, default 'e2r') – How to compare to the reference. (‘e2r’ for
ensemble mean to reference. ‘m2r’ for each individual member to reference)

Returns Dataset of comparison results (if comparing to one reference), or dictionary of Datasets
with keys corresponding to reference name.

Pre-Processing

HindcastEnsemble.smooth([smooth_kws]) Smooth all entries of PredictionEnsemble in the same
manner to be able to still calculate prediction skill after-
wards.

climpred.classes.HindcastEnsemble.smooth

HindcastEnsemble.smooth(smooth_kws=’goddard2013’)
Smooth all entries of PredictionEnsemble in the same manner to be able to still calculate prediction skill after-
wards.

Parameters xobj (xarray object) – decadal prediction ensemble output.

smooth_kws
Dictionary to specify the dims to smooth compatible with spatial_smoothing_xesmf, temporal_smoothing
or spatial_smoothing_xrcoarsen. Shortcut for Goddard et al. 2013 recommendations: ‘goddard2013’

Type dict or str

58 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

climpred

Example: >>> PredictionEnsemble.smooth(smooth_kws={‘time’: 2,

‘lat’: 5, ‘lon’: 4’})

>>> PredictionEnsemble.smooth(smooth_kws='goddard2013')

PerfectModelEnsemble

A PerfectModelEnsemble is a prediction ensemble that is initialized off of a control simulation for a number of
randomly chosen initialization dates. Thus, forecasts cannot be verified against real-world observations. Instead, they
are compared to one another and to the original control run. Read more about the terminology here.

PerfectModelEnsemble(xobj) An object for “perfect model” climate prediction ensem-
bles.

climpred.classes.PerfectModelEnsemble

class climpred.classes.PerfectModelEnsemble(xobj)
An object for “perfect model” climate prediction ensembles.

PerfectModelEnsemble is a sub-class of PredictionEnsemble. It tracks the control run used to initialize the
ensemble for easy computations, bootstrapping, etc.

This object is built on xarray and thus requires the input object to be an xarray Dataset or DataArray.

__init__(xobj)
Create a PerfectModelEnsemble object by inputting output from the control run in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

control
Dictionary of control run associated with the initialized ensemble.

uninitialized
Dictionary of uninitialized run that is bootstrapped from the initialized run.

Methods

__init__(xobj) Create a PerfectModelEnsemble object by inputting
output from the control run in xarray format.

add_control(xobj) Add the control run that initialized the climate pre-
diction ensemble.

bootstrap([metric, comparison, sig, . . .]) Bootstrap ensemble simulations with replacement.
compute_metric([metric, comparison]) Compares the initialized ensemble to the control run.
compute_persistence([metric]) Compute a simple persistence forecast for the control

run.
compute_uninitialized([metric, compari-
son])

Compares the bootstrapped uninitialized run to the
control run.

generate_uninitialized() Generate an uninitialized ensemble by bootstrapping
the initialized prediction ensemble.

get_control() Returns the control as an xarray dataset.
Continued on next page

2.11. API Reference 59

comparisons.html
terminology.html

climpred

Table 15 – continued from previous page
get_initialized() Returns the xarray dataset for the initialized ensem-

ble.
get_uninitialized() Returns the xarray dataset for the uninitialized en-

semble.
smooth([smooth_kws]) Smooth all entries of PredictionEnsemble in the

same manner to be able to still calculate prediction
skill afterwards.

Add and Retrieve Datasets

PerfectModelEnsemble.__init__(xobj) Create a PerfectModelEnsemble object by inputting out-
put from the control run in xarray format.

PerfectModelEnsemble.add_control(xobj) Add the control run that initialized the climate predic-
tion ensemble.

PerfectModelEnsemble.
get_initialized()

Returns the xarray dataset for the initialized ensemble.

PerfectModelEnsemble.get_control() Returns the control as an xarray dataset.
PerfectModelEnsemble.
get_uninitialized()

Returns the xarray dataset for the uninitialized ensem-
ble.

climpred.classes.PerfectModelEnsemble.__init__

PerfectModelEnsemble.__init__(xobj)
Create a PerfectModelEnsemble object by inputting output from the control run in xarray format.

Parameters xobj (xarray object) – decadal prediction ensemble output.

control
Dictionary of control run associated with the initialized ensemble.

climpred.classes.uninitialized
Dictionary of uninitialized run that is bootstrapped from the initialized run.

climpred.classes.PerfectModelEnsemble.add_control

PerfectModelEnsemble.add_control(xobj)
Add the control run that initialized the climate prediction ensemble.

Parameters xobj (xarray object) – Dataset/DataArray of the control run.

climpred.classes.PerfectModelEnsemble.get_initialized

PerfectModelEnsemble.get_initialized()
Returns the xarray dataset for the initialized ensemble.

climpred.classes.PerfectModelEnsemble.get_control

PerfectModelEnsemble.get_control()
Returns the control as an xarray dataset.

60 Chapter 2. Installation

climpred

climpred.classes.PerfectModelEnsemble.get_uninitialized

PerfectModelEnsemble.get_uninitialized()
Returns the xarray dataset for the uninitialized ensemble.

Analysis Functions

PerfectModelEnsemble.bootstrap([metric,
. . .])

Bootstrap ensemble simulations with replacement.

PerfectModelEnsemble.
compute_metric([. . .])

Compares the initialized ensemble to the control run.

PerfectModelEnsemble.
compute_persistence([. . .])

Compute a simple persistence forecast for the control
run.

PerfectModelEnsemble.
compute_uninitialized([. . .])

Compares the bootstrapped uninitialized run to the con-
trol run.

climpred.classes.PerfectModelEnsemble.bootstrap

PerfectModelEnsemble.bootstrap(metric=’pearson_r’, comparison=’m2e’, sig=95, boot-
strap=500, pers_sig=None)

Bootstrap ensemble simulations with replacement.

Parameters

• metric (str, default 'pearson_r') – Metric to apply for bootstrapping.

• comparison (str, default 'm2e') – Comparison style for bootstrapping.

• sig (int, default 95) – Significance level for uninitialized and initialized compari-
son.

• bootstrap (int, default 500) – Number of resampling iterations for bootstrap-
ping with replacement.

• pers_sig (int, default None) – If not None, the separate significance level for
persistence.

Returns

Dictionary of Datasets for each variable applied to with the following variables:

• init_ci: confidence levels of init_skill.

• uninit_ci: confidence levels of uninit_skill.

• pers_ci: confidence levels of pers_skill.

• p_uninit_over_init: p-value of the hypothesis that the difference of skill between the
initialized and uninitialized simulations is smaller or equal to zero based on bootstrap-
ping with replacement.

• p_pers_over_init: p-value of the hypothesis that the difference of skill between the ini-
tialized and persistence simulations is smaller or equal to zero based on bootstrapping
with replacement.

Reference:

2.11. API Reference 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

climpred

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

climpred.classes.PerfectModelEnsemble.compute_metric

PerfectModelEnsemble.compute_metric(metric=’pearson_r’, comparison=’m2m’)
Compares the initialized ensemble to the control run.

Parameters

• metric (str, default 'pearson_r') – Metric to apply in the comparison.

• comparison (str, default 'm2m') – How to compare the climate prediction en-
semble to the control.

Returns Result of the comparison as a Dataset.

climpred.classes.PerfectModelEnsemble.compute_persistence

PerfectModelEnsemble.compute_persistence(metric=’pearson_r’)
Compute a simple persistence forecast for the control run.

Parameters metric (str, default 'pearson_r') – Metric to apply to the persistence
forecast.

Returns Dataset of persistence forecast results (if refname is declared), or dictionary of Datasets
with keys corresponding to reference name.

Reference:

• Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug. Empirical methods in short-term
climate prediction. Oxford University Press, 2007.

climpred.classes.PerfectModelEnsemble.compute_uninitialized

PerfectModelEnsemble.compute_uninitialized(metric=’pearson_r’, comparison=’m2e’)
Compares the bootstrapped uninitialized run to the control run.

Parameters

• metric (str, default 'pearson_r') – Metric to apply in the comparison.

• comparison (str, default 'm2m') – How to compare to the control run.

• running (int, default None) – Size of the running window for variance smooth-
ing.

Returns Result of the comparison as a Dataset.

Generate Data

PerfectModelEnsemble.
generate_uninitialized()

Generate an uninitialized ensemble by bootstrapping the
initialized prediction ensemble.

62 Chapter 2. Installation

https://doi.org/10/f4jjvf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

climpred

climpred.classes.PerfectModelEnsemble.generate_uninitialized

PerfectModelEnsemble.generate_uninitialized()
Generate an uninitialized ensemble by bootstrapping the initialized prediction ensemble.

Returns Bootstrapped (uninitialized) ensemble as a Dataset.

2.11.2 Direct Function Calls

A user can directly call functions in climpred. This requires entering more arguments, e.g. the initialized ensemble
Dataset/xarray.core.dataarray.DataArray directly as well as a reference product or control run. Our
objects HindcastEnsemble and PerfectModelEnsemble wrap most of these functions, making the analysis
process much simpler. Once we have wrapped all of the functions in their entirety, we will likely depricate the ability
to call them directly.

Bootstrap

bootstrap_compute(hind, reference[, hist, . . .]) Bootstrap compute with replacement.
bootstrap_hindcast(hind, hist, reference[, . . .]) Bootstrap compute with replacement. Wrapper of
bootstrap_perfect_model(ds, control[, . . .]) Bootstrap compute with replacement. Wrapper of
bootstrap_uninit_pm_ensemble_from_control(ds,
. . .)

Create a pseudo-ensemble from control run.

bootstrap_uninitialized_ensemble(hind,
hist)

Resample uninitialized hindcast from historical mem-
bers.

dpp_threshold(control[, sig, bootstrap, dim]) Calc DPP significance levels from re-sampled dataset.
varweighted_mean_period_threshold(control[,
. . .])

Calc the variance-weighted mean period significance
levels from re-sampled dataset.

climpred.bootstrap.bootstrap_compute

climpred.bootstrap.bootstrap_compute(hind, reference, hist=None, metric=’pearson_r’,
comparison=’m2e’, dim=’init’, sig=95, boot-
strap=500, pers_sig=None, compute=<function
compute_hindcast>, resample_uninit=<function
bootstrap_uninitialized_ensemble>, **metric_kwargs)

Bootstrap compute with replacement.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• reference (xr.Dataset) – reference simulation.

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘m2e’.

• dim (str or list) – dimension to apply metric over. default: ‘init’

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

2.11. API Reference 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

climpred

• bootstrap (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• compute (func) – function to compute skill. Choose from [climpred.prediction.
compute_perfect_model(),

climpred.prediction.compute_hindcast()].

• resample_uninit (func) – function to create an uninitialized ensem-
ble from a control simulation or uninitialized large ensemble. Choose from:
[bootstrap_uninitialized_ensemble(),

bootstrap_uninit_pm_ensemble_from_control()].

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results

• init_ci (xr.Dataset): confidence levels of init_skill

• uninit_ci (xr.Dataset): confidence levels of uninit_skill

• p_uninit_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and uninitialized simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

• pers_ci (xr.Dataset): confidence levels of pers_skill

• p_pers_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and persistence simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_hindcast

• climpred.bootstrap.bootstrap_perfect_model

climpred.bootstrap.bootstrap_hindcast

climpred.bootstrap.bootstrap_hindcast(hind, hist, reference, metric=’pearson_r’, com-
parison=’e2r’, dim=’init’, sig=95, bootstrap=500,
pers_sig=None, **metric_kwargs)

Bootstrap compute with replacement. Wrapper of py:func:bootstrap_compute for hindcasts.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• reference (xr.Dataset) – reference simulation.

64 Chapter 2. Installation

https://docs.python.org/3/library/functions.html#int
https://doi.org/10/f4jjvf

climpred

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘e2r’.

• dim (str) – dimension to apply metric over. default: ‘init’

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• bootstrap (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results

• init_ci (xr.Dataset): confidence levels of init_skill

• uninit_ci (xr.Dataset): confidence levels of uninit_skill

• p_uninit_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and uninitialized simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

• pers_ci (xr.Dataset): confidence levels of pers_skill

• p_pers_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and persistence simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_compute

• climpred.prediction.compute_hindcast

climpred.bootstrap.bootstrap_perfect_model

climpred.bootstrap.bootstrap_perfect_model(ds, control, metric=’pearson_r’, com-
parison=’m2e’, dim=None, sig=95,
bootstrap=500, pers_sig=None, **met-
ric_kwargs)

Bootstrap compute with replacement. Wrapper of py:func:bootstrap_compute for perfect-model frame-
work.

Parameters

2.11. API Reference 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://doi.org/10/f4jjvf

climpred

• hind (xr.Dataset) – prediction ensemble.

• reference (xr.Dataset) – reference simulation.

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘m2e’.

• dim (str) – dimension to apply metric over. default: [‘init’, ‘member’]

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• bootstrap (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results

• init_ci (xr.Dataset): confidence levels of init_skill

• uninit_ci (xr.Dataset): confidence levels of uninit_skill

• p_uninit_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and uninitialized simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

• pers_ci (xr.Dataset): confidence levels of pers_skill

• p_pers_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and persistence simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_compute

• climpred.prediction.compute_perfect_model

climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control

climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control(ds, control)
Create a pseudo-ensemble from control run.

66 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://doi.org/10/f4jjvf

climpred

Note: Needed for block bootstrapping confidence intervals of a metric in perfect model framework. Takes
randomly segments of length of ensemble dataset from control and rearranges them into ensemble and member
dimensions.

Parameters

• ds (xarray object) – ensemble simulation.

• control (xarray object) – control simulation.

Returns pseudo-ensemble generated from control run.

Return type ds_e (xarray object)

climpred.bootstrap.bootstrap_uninitialized_ensemble

climpred.bootstrap.bootstrap_uninitialized_ensemble(hind, hist)
Resample uninitialized hindcast from historical members.

Note: Needed for bootstrapping confidence intervals and p_values of a metric in the hindcast framework.
Takes hind.lead.size timesteps from historical at same forcing and rearranges them into ensemble and member
dimensions.

Parameters

• hind (xarray object) – hindcast.

• hist (xarray object) – historical uninitialized.

Returns uninitialize hindcast with hind.coords.

Return type uninit_hind (xarray object)

climpred.bootstrap.dpp_threshold

climpred.bootstrap.dpp_threshold(control, sig=95, bootstrap=500, dim=’time’, **dpp_kwargs)
Calc DPP significance levels from re-sampled dataset.

Reference:

• Feng, X., T. DelSole, and P. Houser. “Bootstrap Estimated Seasonal Potential Predictability of Global
Temperature and Precipitation.” Geophysical Research Letters 38, no. 7 (2011). https://doi.org/10/
ft272w.

See also:

• climpred.bootstrap._bootstrap_func

• climpred.stats.dpp

2.11. API Reference 67

https://doi.org/10/ft272w
https://doi.org/10/ft272w

climpred

climpred.bootstrap.varweighted_mean_period_threshold

climpred.bootstrap.varweighted_mean_period_threshold(control, sig=95, boot-
strap=500, time_dim=’time’)

Calc the variance-weighted mean period significance levels from re-sampled dataset.

See also:

• climpred.bootstrap._bootstrap_func

• climpred.stats.varweighted_mean_period

Prediction

compute_hindcast(hind, reference[, metric, . . .]) Compute a predictability skill score against a reference
compute_perfect_model(ds, control[, metric,
. . .])

Compute a predictability skill score for a perfect-model
framework simulation dataset.

compute_persistence(hind, reference[, . . .]) Computes the skill of a persistence forecast from a sim-
ulation.

compute_uninitialized(uninit, reference[, . . .]) Compute a predictability score between an uninitialized
ensemble and a reference.

climpred.prediction.compute_hindcast

climpred.prediction.compute_hindcast(hind, reference, metric=’pearson_r’, com-
parison=’e2r’, dim=’init’, max_dof=False,
add_attrs=True, **metric_kwargs)

Compute a predictability skill score against a reference

Parameters

• hind (xarray object) – Expected to follow package conventions: * init : dim of
initialization dates * lead : dim of lead time from those initializations Additional dims can
be member, lat, lon, depth, . . .

• reference (xarray object) – reference output/data over same time period.

• metric (str) – Metric used in comparing the decadal prediction ensemble with the refer-
ence (see climpred.utils.get_metric_class() and Metrics).

• comparison (str) – How to compare the decadal prediction ensemble to the reference:

– e2r : ensemble mean to reference (Default)

– m2r : each member to the reference

(see Comparisons)

• dim (str or list) – dimension to apply metric over. default: ‘init’

• max_dof (bool) – If True, maximize the degrees of freedom by slicing hind and reference
to a common time frame at each lead.

If False (default), then slice to a common time frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.

• add_attrs (bool) – write climpred compute args to attrs. default: True

68 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

climpred

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns Predictability with main dimension lag without dimension dim

Return type skill (xarray object)

climpred.prediction.compute_perfect_model

climpred.prediction.compute_perfect_model(ds, control, metric=’pearson_r’, compari-
son=’m2e’, dim=None, add_attrs=True, **met-
ric_kwargs)

Compute a predictability skill score for a perfect-model framework simulation dataset.

Parameters

• ds (xarray object) – ensemble with dims lead, init, member.

• control (xarray object) – control with dimension time.

• metric (str) – metric name, see climpred.utils.get_metric_class() and
(see Metrics).

• comparison (str) – comparison name defines what to take as forecast and verification
(see climpred.utils.get_comparison_class() and Comparisons).

• dim (str or list) – dimension to apply metric over. default: [‘member’, ‘init’]

• add_attrs (bool) – write climpred compute args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric. (see the arguments
required for a given metric in metrics.py)

Returns

skill score with dimensions as input ds without dim.

Return type skill (xarray object)

climpred.prediction.compute_persistence

climpred.prediction.compute_persistence(hind, reference, metric=’pearson_r’,
max_dof=False, **metric_kwargs)

Computes the skill of a persistence forecast from a simulation.

Parameters

• hind (xarray object) – The initialized ensemble.

• reference (xarray object) – The reference time series.

• metric (str) – Metric name to apply at each lag for the persistence computation. Default:
‘pearson_r’

• max_dof (bool) – If True, maximize the degrees of freedom by slicing hind and reference
to a common time frame at each lead.

If False (default), then slice to a common time frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

2.11. API Reference 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

climpred

Returns Results of persistence forecast with the input metric applied.

Return type pers (xarray object)

Reference:

• Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug. Empirical methods in short-term
climate prediction. Oxford University Press, 2007.

climpred.prediction.compute_uninitialized

climpred.prediction.compute_uninitialized(uninit, reference, metric=’pearson_r’, compari-
son=’e2r’, dim=’time’, add_attrs=True, **met-
ric_kwargs)

Compute a predictability score between an uninitialized ensemble and a reference.

Note: Based on Decadal Prediction protocol, this should only be computed for the first lag and then projected
out to any further lags being analyzed.

Parameters

• uninit (xarray object) – uninitialized ensemble.

• reference (xarray object) – reference output/data over same time period.

• metric (str) – Metric used in comparing the uninitialized ensemble with the reference.

• comparison (str) –

How to compare the uninitialized ensemble to the reference:

– e2r : ensemble mean to reference (Default)

– m2r : each member to the reference

• add_attrs (bool) – write climpred compute args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric

Returns Results from comparison at the first lag.

Return type u (xarray object)

Metrics

Metric(name, function, positive, . . . [, . . .]) Master class for all metrics.
_get_norm_factor(comparison) Get normalization factor with respect to the type of

comparison used for

climpred.metrics.Metric

class climpred.metrics.Metric(name, function, positive, probabilistic, unit_power,
long_name=None, aliases=None, minimum=None, maxi-
mum=None, perfect=None, proper=None)

Master class for all metrics.

70 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

climpred

__init__(name, function, positive, probabilistic, unit_power, long_name=None, aliases=None, mini-
mum=None, maximum=None, perfect=None, proper=None)

Metric initialization.

Parameters

• name (str) – name of metric.

• function (function) – metric function.

• positive (bool) – Is metric positively oriented? Higher metric values means higher
skill.

• probabilistic (bool) – Is metric probabilistic? False means deterministic.

• unit_power (float, int) – Power of the unit of skill based on unit of input, e.g.
input unit [m]: skill unit [(m)**unit_power]

• long_name (str, optional) – long_name of metric. Defaults to None.

• aliases (list of str, optional) – Allowed aliases for this metric. Defaults to
None.

• min (float, optional) – Minimum skill for metric. Defaults to None.

• max (float, optional) – Maxmimum skill for metric. Defaults to None.

• perfect (float, optional) – Perfect skill for metric. Defaults to None.

• proper (bool, optional) – Is strictly proper skill score? According to Gneitning
& Raftery (2012). See https://en.wikipedia.org/wiki/Scoring_rule. Defaults to None.

Returns metric class Metric.

Return type Metric

Methods

__init__(name, function, positive, . . . [, . . .]) Metric initialization.

climpred.metrics._get_norm_factor

climpred.metrics._get_norm_factor(comparison)

Get normalization factor with respect to the type of comparison used for normalized distance-based met-
rics PPP, NMSE, NRMSE, MSSS, NMAE.

A distance-based metric is normalized by the standard deviation or variance of a reference/control simu-
lation. The goal of a normalized distance-based metric is to get a constant and comparable value of typi-
cally 1 (or 0 for metrics defined as 1 -), when the metric saturizes and the predictability horizon is reached.
To directly compare skill between different comparisons used, a factor is added in the normalized metric
formula, see Seferian et al. 2018. Exemplarily, NRMSE gets smaller in comparison ‘m2e’ than ‘m2m’
by design because the ensemble mean is always closer to individual ensemble members than ensemble
members to each other.

Parameters comparison (class) – comparison class.

Returns normalization factor.

Return type fac (int)

2.11. API Reference 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Scoring_rule
https://docs.python.org/3/library/functions.html#int

climpred

Raises KeyError – if comparison is not matching.

Example

>>> # check skill saturation value of roughly 1 for different comparisons
>>> metric='nrmse'
>>> for c in ['m2m', 'm2e', 'm2c', 'e2c']:

s = compute_perfect_model(ds, control, metric=metric, comparison=c)
s.plot(label=' '.join([metric,c]))

>>> plt.legend()

Reference:

• Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing

the Decadal Predictability of Land and Ocean Carbon Uptake.” Geophysical Research Letters,
March 15, 2018. https://doi.org/10/gdb424.

Comparisons

Comparison(name, function, hindcast, . . . [, . . .]) Master class for all comparisons.

climpred.comparisons.Comparison

class climpred.comparisons.Comparison(name, function, hindcast, probabilistic,
long_name=None)

Master class for all comparisons.

__init__(name, function, hindcast, probabilistic, long_name=None)
Comparison initialization.

Parameters

• name (str) – name of comparison.

• function (function) – comparison function.

• hindcast (bool) – Can comparison be used in compute_hindcast? False means com-
pute_perfect_model

• probabilistic (bool) – Can this comparison be used for probabilistic metrics also?
Probabilistic metrics require multiple forecasts. False means that comparison is only de-
terministic. True means that comparison can be used both deterministic and probabilistic.

• long_name (str, optional) – longname of comparison. Defaults to None.

Returns comparison class Comparison.

Return type comparison

Methods

__init__(name, function, hindcast, probabilistic) Comparison initialization.

72 Chapter 2. Installation

https://docs.python.org/3/library/exceptions.html#KeyError
https://doi.org/10/gdb424
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

climpred

Statistics

autocorr(ds[, lag, dim, return_p]) Calculate the lagged correlation of time series.
corr(x, y[, dim, lag, return_p]) Computes the Pearson product-moment coefficient of

linear correlation.
decorrelation_time(da[, r, dim]) Calculate the decorrelaton time of a time series.
dpp(ds[, dim, m, chunk]) Calculates the Diagnostic Potential Predictability (dpp)
rm_poly(ds, order[, dim]) Returns xarray object with nth-order fit removed.
rm_trend(da[, dim]) Remove linear trend from time series.
varweighted_mean_period(da[, dim]) Calculate the variance weighted mean period of time se-

ries based on xrft.power_spectrum.

climpred.stats.autocorr

climpred.stats.autocorr(ds, lag=1, dim=’time’, return_p=False)
Calculate the lagged correlation of time series.

Parameters

• ds (xarray object) – Time series or grid of time series.

• lag (optional int) – Number of time steps to lag correlate to.

• dim (optional str) – Name of dimension to autocorrelate over.

• return_p (optional bool) – If True, return correlation coefficients and p values.

Returns

Pearson correlation coefficients.

If return_p, also returns their associated p values.

climpred.stats.corr

climpred.stats.corr(x, y, dim=’time’, lag=0, return_p=False)
Computes the Pearson product-moment coefficient of linear correlation.

Note: This version calculates the effective degrees of freedom, accounting for autocorrelation within each time
series that could fluff the significance of the correlation.

Parameters

• x (xarray object) – Independent variable time series or grid of time series.

• y (xarray object) – Dependent variable time series or grid of time series

• dim (optional str) – Correlation dimension

• lag (optional int) – Lag to apply to correlaton, with x predicting y.

• return_p (optional bool) – If True, return correlation coefficients as well as p val-
ues.

Returns Pearson correlation coefficients If return_p True, associated p values.

2.11. API Reference 73

climpred

References

• Wilks, Daniel S. Statistical methods in the atmospheric sciences. Vol. 100. Academic press, 2011.

• Lovenduski, Nicole S., and Nicolas Gruber. “Impact of the Southern Annular Mode on Southern Ocean
circulation and biology.” Geophysical Research Letters 32.11 (2005).

climpred.stats.decorrelation_time

climpred.stats.decorrelation_time(da, r=20, dim=’time’)
Calculate the decorrelaton time of a time series.

𝜏𝑑 = 1 + 2 *
𝑟∑︁

𝑘=1

(𝛼𝑘)
𝑘

Parameters

• da (xarray object) – Time series.

• r (optional int) – Number of iterations to run the above formula.

• dim (optional str) – Time dimension for xarray object.

Returns Decorrelation time of time series.

Reference:

• Storch, H. v, and Francis W. Zwiers. Statistical Analysis in Climate Research. Cambridge; New York:
Cambridge University Press, 1999., p.373

climpred.stats.dpp

climpred.stats.dpp(ds, dim=’time’, m=10, chunk=True)
Calculates the Diagnostic Potential Predictability (dpp)

𝐷𝑃𝑃unbiased(𝑚) =
𝜎2
𝑚 − 1

𝑚 · 𝜎2

𝜎2

Note: Resplandy et al. 2015 and Seferian et al. 2018 calculate unbiased DPP in a slightly different way:
chunk=False.

Parameters

• ds (xr.DataArray) – control simulation with time dimension as years.

• dim (str) – dimension to apply DPP on. Default: time.

• m (optional int) – separation time scale in years between predictable low-freq compo-
nent and high-freq noise.

• chunk (optional boolean) – Whether chunking is applied. Default: True. If False,
then uses Resplandy 2015 / Seferian 2018 method.

Returns ds without time dimension.

Return type dpp (xr.DataArray)

74 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str

climpred

References

• Boer, G. J. “Long Time-Scale Potential Predictability in an Ensemble of Coupled Climate Models.” Cli-
mate Dynamics 23, no. 1 (August 1, 2004): 29–44. https://doi.org/10/csjjbh.

• Resplandy, L., R. Séférian, and L. Bopp. “Natural Variability of CO2 and O2 Fluxes: What Can We Learn
from Centuries-Long Climate Models Simulations?” Journal of Geophysical Research: Oceans 120, no. 1
(January 2015): 384–404. https://doi.org/10/f63c3h.

• Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the Decadal Predictability of Land
and Ocean Carbon Uptake.” Geophysical Research Letters, March 15, 2018. https://doi.org/10/gdb424.

climpred.stats.rm_poly

climpred.stats.rm_poly(ds, order, dim=’time’)
Returns xarray object with nth-order fit removed.

Note: This automatically performs a linear interpolation across any NaNs in the time series.

Parameters

• ds (xarray object) – Time series to be detrended.

• order (int) – Order of polynomial fit to be removed.

• dim (optional str) – Dimension over which to remove the polynomial fit.

Returns xarray object with polynomial fit removed.

climpred.stats.rm_trend

climpred.stats.rm_trend(da, dim=’time’)
Remove linear trend from time series.

Parameters

• ds (xarray object) – Time series to be detrended.

• dim (optional str) – Dimension over which to remove the linear trend.

Returns xarray object with linear trend removed.

climpred.stats.varweighted_mean_period

climpred.stats.varweighted_mean_period(da, dim=’time’, **kwargs)
Calculate the variance weighted mean period of time series based on xrft.power_spectrum.

𝑃𝑥 =

∑︀
𝑘 𝑉 (𝑓𝑘, 𝑥)∑︀

𝑘 𝑓𝑘 · 𝑉 (𝑓𝑘, 𝑥)

Parameters

• da (xarray object) – input data including dim.

• dim (optional str) – Name of time dimension.

2.11. API Reference 75

https://doi.org/10/csjjbh
https://doi.org/10/f63c3h
https://doi.org/10/gdb424
https://docs.python.org/3/library/functions.html#int

climpred

• **kwargs see xrft.power_spectrum (for) –

Reference:

• Branstator, Grant, and Haiyan Teng. “Two Limits of Initial-Value Decadal Predictability in a CGCM.”
Journal of Climate 23, no. 23 (August 27, 2010): 6292-6311. https://doi.org/10/bwq92h.

See also: https://xrft.readthedocs.io/en/latest/api.html#xrft.xrft.power_spectrum

Tutorial

load_dataset([name, cache, cache_dir, . . .]) Load example data or a mask from an online repository.

climpred.tutorial.load_dataset

climpred.tutorial.load_dataset(name=None, cache=True, cache_dir=’~/.climpred_data’,
github_url=’https://github.com/bradyrx/climpred-data’,
branch=’master’, extension=None, proxy_dict=None, **kws)

Load example data or a mask from an online repository.

Parameters

• name – (str, default None) Name of the netcdf file containing the dataset, without the .nc
extension. If None, this function prints out the available datasets to import.

• cache_dir – (str, optional) The directory in which to search for and cache the data.

• cache – (bool, optional) If True, cache data locally for use on later calls.

• github_url – (str, optional) Github repository where the data is stored.

• branch – (str, optional) The git branch to download from.

• extension – (str, optional) Subfolder within the repository where the data is stored.

• proxy_dict – (dict, optional) Dictionary with keys as either ‘http’ or ‘https’ and values
as the proxy server. This is useful if you are on a work computer behind a firewall and need
to use a proxy out to download data.

• kws – (dict, optional) Keywords passed to xarray.open_dataset

Returns The desired xarray dataset.

Examples

>>> from climpred.tutorial import load_dataset()
>>> proxy_dict = {'http': '127.0.0.1'}
>>> ds = load_dataset('FOSI-SST', cache=False, proxy_dict=proxy_dict)

2.12 What’s New

2.12.1 climpred v1.2.0 (2019-12-17)

76 Chapter 2. Installation

https://doi.org/10/bwq92h
https://xrft.readthedocs.io/en/latest/api.html#xrft.xrft.power_spectrum

climpred

Depreciated

• Abbreviation pval depreciated. Use p_pval for pearson_r_p_value instead. (GH#264) Aaron Spring.

New Features

• Users can now pass a custom metric or comparison to compute functions. (GH#268) Aaron Spring.

– See user-defined-metrics and user-defined-comparisons.

• New deterministic metrics (see metrics). (GH#264) Aaron Spring.

– Spearman ranked correlation (spearman_r)

– Spearman ranked correlation p-value (spearman_r_p_value)

– Mean Absolute Deviation (mad)

– Mean Absolute Percent Error (mape)

– Symmetric Mean Absolute Percent Error (smape)

• Users can now apply arbitrary xarray methods to HindcastEnsemble and PerfectModelEnsemble.
(GH#243) Riley X. Brady.

– See the Prediction Ensemble objects demo page.

• Add “getter” methods to HindcastEnsemble and PerfectModelEnsemble to retrieve xarray
datasets from the objects. (GH#243) Riley X. Brady.

>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')
>>> ref = climpred.tutorial.load_dataset('ERSST')
>>> hindcast = climpred.HindcastEnsemble(hind)
>>> hindcast = hindcast.add_reference(ref, 'ERSST')
>>> print(hindcast)
<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 ...
ERSST:

SST (time) float32 ...
Uninitialized:

None
>>> print(hindcast.get_initialized())
<xarray.Dataset>
Dimensions: (init: 64, lead: 10, member: 10)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* member (member) int32 1 2 3 4 5 6 7 8 9 10

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0
→˓2017.0
Data variables:

SST (init, lead, member) float64 ...
>>> print(hindcast.get_reference('ERSST'))
<xarray.Dataset>
Dimensions: (time: 61)
Coordinates:

* time (time) int64 1955 1956 1957 1958 1959 ... 2011 2012 2013 2014
→˓2015
Data variables:

SST (time) float32 ...

2.12. What’s New 77

https://github.com/bradyrx/climpred/pull/264
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/268
https://github.com/aaronspring
metrics.html#user-defined-metrics
comparisons.html#user-defined-comparisons
metrics.html
https://github.com/bradyrx/climpred/pull/264
https://github.com/aaronspring
metrics.html#spearman-anomaly-correlation-coefficient-sacc
metrics.html#spearman-anomaly-correlation-coefficient-sacc
metrics.html#median-absolute-deviation-mad
metrics.html#mean-absolute-percentage-error-mape
metrics.html#symmetric-mean-absolute-percentage-error-smape
https://github.com/bradyrx/climpred/pull/243
https://github.com/bradyrx
prediction-ensemble-object.html
https://github.com/bradyrx/climpred/pull/243
https://github.com/bradyrx

climpred

• metric_kwargs can be passed to Metric. (GH#264) Aaron Spring.

– See metric_kwargs under metrics.

Bug Fixes

• compute_metric() doesn’t drop coordinates from the initialized hindcast ensemble anymore. (GH#258)
Aaron Spring.

• Metric uacc does not crash when ppp negative anymore. (GH#264) Aaron Spring.

• Update xskillscore to version 0.0.9 to fix all-NaN issue with pearson_r and pearson_r_p_value
when there’s missing data. (GH#269) Riley X. Brady.

Internals/Minor Fixes

• Rewrote varweighted_mean_period() based on xrft. Changed time_dim to dim. Function no
longer drops coordinates. (GH#258) Aaron Spring

• Add dim='time' in dpp(). (GH#258) Aaron Spring

• Comparisons m2m, m2e rewritten to not stack dims into supervector because this is now done in
xskillscore. (GH#264) Aaron Spring

• Add tqdm progress bar to bootstrap_compute(). (GH#244) Aaron Spring

• Remove inplace behavior for HindcastEnsemble and PerfectModelEnsemble. (GH#243) Riley X.
Brady

– See demo page on prediction ensemble objects

• Added tests for chunking with dask. (GH#258) Aaron Spring

• Fix test issues with esmpy 8.0 by forcing esmpy 7.1 (GH#269). Riley X. Brady

• Rewrote metrics and comparisons as classes to accomodate custom metrics and comparisons. (GH#268)
Aaron Spring

– See user-defined-metrics and user-defined-comparisons.

Documentation

• Add examples notebook for temporal and spatial smoothing. (GH#244) Aaron Spring

• Add documentation for computing a metric over a specified dimension. (GH#244) Aaron Spring

• Update API to be more organized with individual function/class pages. (GH#243) Riley X. Brady.

• Add page describing the HindcastEnsemble and PerfectModelEnsemble objects more clearly.
(GH#243) Riley X. Brady

• Add page for publications and helpful links. (GH#270) Riley X. Brady.

2.12.2 climpred v1.1.0 (2019-09-23)

Features

• Write information about skill computation to netcdf attributes(GH#213) Aaron Spring

78 Chapter 2. Installation

https://github.com/bradyrx/climpred/pull/264
https://github.com/aaronspring
metrics.html
https://github.com/bradyrx/climpred/pull/258
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/264
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/269
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/258
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/258
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/264
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/244
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/243
https://github.com/bradyrx
https://github.com/bradyrx
prediction-ensemble-object.html
https://github.com/bradyrx/climpred/pull/258
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/269
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/268
https://github.com/aaronspring
metrics.html#user-defined-metrics
comparisons.html#user-defined-comparisons
examples/smoothing.html
https://github.com/bradyrx/climpred/pull/244
https://github.com/aaronspring
comparisons.html#compute-over-dimension
https://github.com/bradyrx/climpred/pull/244
https://github.com/aaronspring
api.html
https://github.com/bradyrx/climpred/pull/243
https://github.com/bradyrx
prediction-ensemble-object.html
https://github.com/bradyrx/climpred/pull/243
https://github.com/bradyrx
publications.html
helpful-links.html
https://github.com/bradyrx/climpred/pull/270
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/213
https://github.com/aaronspring

climpred

• Temporal and spatial smoothing module (GH#224) Aaron Spring

• Add metrics brier_score, threshold_brier_score and crpss_es (GH#232) Aaron Spring

• Allow compute_hindcast and compute_perfect_model to specify which dimension dim to calculate metric over
(GH#232) Aaron Spring

Bug Fixes

• Correct implementation of probabilistic metrics from xskillscore in compute_perfect_model, boot-
strap_perfect_model, compute_hindcast and bootstrap_hindcast, now requires xskillscore>=0.05 (GH#232)
Aaron Spring

Internals/Minor Fixes

• Rename .stats.DPP to dpp (GH#232) Aaron Spring

• Add matplotlib as a main dependency so that a direct pip installation works (GH#211) Riley X. Brady.

• climpred is now installable from conda-forge (GH#212) Riley X. Brady.

• Fix erroneous descriptions of sample datasets (GH#226) Riley X. Brady.

• Benchmarking time and peak memory of compute functions with asv (GH#231) Aaron Spring

Documentation

• Add scope of package to docs for clarity for users and developers. (GH#235) Riley X. Brady.

2.12.3 climpred v1.0.1 (2019-07-04)

Bug Fixes

• Accomodate for lead-zero within the lead dimension (GH#196) Riley X. Brady.

• Fix issue with adding uninitialized ensemble to HindcastEnsemble object (GH#199) Riley X. Brady.

• Allow max_dof keyword to be passed to compute_metric and compute_persistence for
HindcastEnsemble (GH#199) Riley X. Brady.

Internals/Minor Fixes

• Force xskillscore version 0.0.4 or higher to avoid ImportError (GH#204) Riley X. Brady.

• Change max_dfs keyword to max_dof (GH#199) Riley X. Brady.

• Add testing for HindcastEnsemble and PerfectModelEnsemble (GH#199) Riley X. Brady

2.12.4 climpred v1.0.0 (2019-07-03)

climpred v1.0.0 represents the first stable release of the package. It includes HindcastEnsemble and
PerfectModelEnsemble objects to perform analysis with. It offers a suite of deterministic and probabilistic met-
rics that are optimized to be run on single time series or grids of data (e.g., lat, lon, and depth). Currently, climpred
only supports annual forecasts.

2.12. What’s New 79

https://github.com/bradyrx/climpred/pull/224
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/211
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/212
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/226
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/231
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/235
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/196
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/204
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx

climpred

Features

• Bootstrap prediction skill based on resampling with replacement consistently in ReferenceEnsemble and
PerfectModelEnsemble. (GH#128) Aaron Spring

• Consistent bootstrap function for climpred.stats functions via bootstrap_func wrapper. (GH#167)
Aaron Spring

• many more metrics: _msss_murphy, _less and probabilistic _crps, _crpss (GH#128) Aaron Spring

Bug Fixes

• compute_uninitialized now trims input data to the same time window. (GH#193) Riley X. Brady

• rm_poly now properly interpolates/fills NaNs. (GH#192) Riley X. Brady

Internals/Minor Fixes

• The climpred version can be printed. (GH#195) Riley X. Brady

• Constants are made elegant and pushed to a separate module. (GH#184) Andrew Huang

• Checks are consolidated to their own module. (GH#173) Andrew Huang

Documentation

• Documentation built extensively in multiple PRs.

2.12.5 climpred v0.3 (2019-04-27)

climpred v0.3 really represents the entire development phase leading up to the version 1 release. This was done in
collaboration between Riley X. Brady, Aaron Spring, and Andrew Huang. Future releases will have less additions.

Features

• Introduces object-oriented system to climpred, with classes ReferenceEnsemble and
PerfectModelEnsemble. (GH#86) Riley X. Brady

• Expands bootstrapping module for perfect-module configurations. (GH#78, GH#87) Aaron Spring

• Adds functions for computing Relative Entropy (GH#73) Aaron Spring

• Sets more intelligible dimension expectations for climpred (GH#98, GH#105) Riley X. Brady and Aaron
Spring:

– init: initialization dates for the prediction ensemble

– lead: retrospective forecasts from prediction ensemble; returned dimension for prediction calculations

– time: time dimension for control runs, references, etc.

– member: ensemble member dimension.

• Updates open_dataset to display available dataset names when no argument is passed. (GH#123) Riley X.
Brady

• Change ReferenceEnsemble to HindcastEnsemble. (GH#124) Riley X. Brady

80 Chapter 2. Installation

https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/167
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/193
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/192
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/195
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/184
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/173
https://github.com/ahuang11
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/86
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/78
https://github.com/bradyrx/climpred/pull/87
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/73
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/98
https://github.com/bradyrx/climpred/pull/105
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/123
https://github.com/bradyrx
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/124
https://github.com/bradyrx

climpred

• Add probabilistic metrics to climpred. (GH#128) Aaron Spring

• Consolidate separate perfect-model and hindcast functions into singular functions. (GH#128) Aaron Spring

• Add option to pass proxy through to open_dataset for firewalled networks. (GH#138) Riley X. Brady

Bug Fixes

• xr_rm_poly can now operate on Datasets and with multiple variables. It also interpolates across NaNs in
time series. (GH#94) Andrew Huang

• Travis CI, treon, and pytest all run for automated testing of new features. (GH#98, GH#105, GH#106)
Riley X. Brady and Aaron Spring

• Clean up check_xarray decorators and make sure that they work. (GH#142) Andrew Huang

• Ensures that help() returns proper docstring even with decorators. (GH#149) Andrew Huang

• Fixes bootstrap so p values are correct. (GH#170) Aaron Spring

Internals/Minor Fixes

• Adds unit testing for all perfect-model comparisons. (GH#107) Aaron Spring

• Updates CESM-LE uninitialized ensemble sample data to have 34 members. (GH#113) Riley X. Brady

• Adds MPI-ESM hindcast, historical, and assimilation sample data. (GH#119) Aaron Spring

• Replaces check_xarray with a decorator for checking that input arguments are xarray objects. (GH#120)
Andrew Huang

• Add custom exceptions for clearer error reporting. (GH#139) Riley X. Brady

• Remove “xr” prefix from stats module. (GH#144) Riley X. Brady

• Add codecoverage for testing. (GH#152) Riley X. Brady

• Update exception messages for more pretty error reporting. (GH#156) Andrew Huang

• Add pre-commit and flake8/black check in CI. (GH#163) Riley X. Brady

• Change loadutils module to tutorial and open_dataset to load_dataset. (GH#164) Riley X.
Brady

• Remove predictability horizon function to revisit for v2. (GH#165) Riley X. Brady

• Increase code coverage through more testing. (GH#167) Aaron Spring

• Consolidates checks and constants into modules. (GH#173) Andrew Huang

2.12.6 climpred v0.2 (2019-01-11)

Name changed to climpred, developed enough for basic decadal prediction tasks on a perfect-model ensemble and
reference-based ensemble.

2.12.7 climpred v0.1 (2018-12-20)

Collaboration between Riley Brady and Aaron Spring begins.

2.12. What’s New 81

https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/138
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/94
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/98
https://github.com/bradyrx/climpred/pull/105
https://github.com/bradyrx/climpred/pull/106
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/142
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/149
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/170
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/107
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/113
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/119
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/120
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/139
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/144
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/152
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/156
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/163
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/164
https://github.com/bradyrx
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/165
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/167
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/173
https://github.com/ahuang11

climpred

2.13 Helpful Links

We hope to curate in the climpred documentation a comprehensive report of terminology, best practices, analysis
methods, etc. in the prediction community. Here we suggest other resources for initialized prediction of the Earth
system to round out the information provided in our documentation.

2.13.1 Forecast Verification

• CAWCR Forecast Verification Overview: A nice overview of forecast verification, including a suite of metrics
and their derivation.

2.14 Publications Using climpred

Below is a list of publications that have made use of climpred in their analysis. You can nod to climpred, e.g.,
in your acknowledgements section to help build the community. The main developers of the package intend to release
a manuscript documenting climpred in 2020 with a citable DOI, so this can be referenced in the future.

Feel free to open a Pull Request to add your publication to the list!

2.14.1 2019

• Brady, R. X., Lovenduski, N. S., Yeager, S. G., Long, M. C., & Lindsay, K. (2019, October 10). Skillful
multiyear predictions of ocean acidification in the California Current System. https://doi.org/10.31223/osf.io/
3m2h7

2.15 Contribution Guide

Contributions are highly welcomed and appreciated. Every little help counts, so do not hesitate! You can make a high
impact on climpred just by using it and reporting issues.

The following sections cover some general guidelines regarding development in climpred for maintainers and
contributors. Nothing here is set in stone and can’t be changed. Feel free to suggest improvements or changes in the
workflow.

Contribution links

• Contribution Guide

– Feature requests and feedback

– Report bugs

– Fix bugs

– Write documentation

– Preparing Pull Requests

82 Chapter 2. Installation

https://www.cawcr.gov.au/projects/verification/
contributing.html
https://doi.org/10.31223/osf.io/3m2h7
https://doi.org/10.31223/osf.io/3m2h7
https://github.com/bradyrx/climpred/issues

climpred

2.15.1 Feature requests and feedback

We are eager to hear about your requests for new features and any suggestions about the API, infrastructure, and so
on. Feel free to submit these as issues with the label “feature request.”

Please make sure to explain in detail how the feature should work and keep the scope as narrow as possible. This will
make it easier to implement in small PRs.

2.15.2 Report bugs

Report bugs for climpred in the issue tracker with the label “bug”.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting, specifically the Python interpreter
version, installed libraries, and climpred version.

• Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should passm that is a very useful commit to make as well,
even if you cannot fix the bug itself.

2.15.3 Fix bugs

Look through the GitHub issues for bugs.

Talk to developers to find out how you can fix specific bugs.

2.15.4 Write documentation

climpred could always use more documentation. What exactly is needed?

• More complementary documentation. Have you perhaps found something unclear?

• Docstrings. There can never be too many of them.

• Example notebooks with different Earth System Models, lead times, etc. – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface, without using a local copy. This can be
convenient for small fixes.

Our documentation is written in reStructuredText. You can follow our conventions in already written documents.
Some helpful guides are located here and here.

Note: Build the documentation locally with the following command:

$ conda env update -f ci/environment-dev-3.6.yml
$ cd docs
$ make html

The built documentation should be available in the docs/build/.

If you need to add new functions to the API, run sphinx-autogen -o api api.rst from the docs/source
directory and add the functions to api.rst.

2.15. Contribution Guide 83

https://github.com/bradyrx/climpred/issues/new
https://github.com/bradyrx/climpred/issues
https://github.com/bradyrx/climpred/labels/bug
http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst

climpred

2.15.5 Preparing Pull Requests

1. Fork the climpred GitHub repository. It’s fine to use climpred as your fork repository name because it will
live under your user.

2. Clone your fork locally using git, connect your repository to the upstream (main project), and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/climpred.git
$ cd climpred
$ git remote add upstream git@github.com:bradyrx/climpred.git

now, to fix a bug or add feature create your own branch off "master":

$ git checkout -b your-bugfix-feature-branch-name master

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Install dependencies into a new conda environment:

$ conda env update -f ci/environment-dev-3.7.yml
$ conda activate climpred-dev

4. Make an editable install of climpred by running:

$ pip install -e .

5. Install pre-commit and its hook on the climpred repo:

$ pip install --user pre-commit
$ pre-commit install

Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks to
ensure code-style and code formatting is consistent.

Now you have an environment called climpred-dev that you can work in. You’ll need to make
sure to activate that environment next time you want to use it after closing the terminal or your
system.

You can now edit your local working copy and run/add tests as necessary. Please follow PEP-8 for
naming. When committing, pre-commit will modify the files as needed, or will generally be quite
clear about what you need to do to pass the commit test.

6. Break your edits up into reasonably sized commits.

$ git commit -a -m “<commit message>” $ git push -u

7. Run all the tests

Now running tests is as simple as issuing this command:

$ coverage run --source climpred -m py.test

This command will run tests via the “pytest” tool against Python 3.6.

8. Create a new changelog entry in CHANGELOG.rst:

• The entry should be entered as:

84 Chapter 2. Installation

https://github.com/bradyrx/climpred
https://git-scm.com/
https://git.wiki.kernel.org/index.php/QuickStart
https://pre-commit.com
https://pre-commit.com/

climpred

<description> (:pr:`#<pull request number>`) `<author's names>`_

where <description> is the description of the PR related to the change and <pull request
number> is the pull request number and <author's names> are your first and last names.

• Add yourself to list of authors at the end of CHANGELOG.rst file if not there yet, in alphabetical order.

1. Add yourself to the contributors <https://climpred.readthedocs.io/en/latest/contributors.html>_ list via docs/
source/contributors.rst.

1. Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/climpred
compare: your-branch-name

base-fork: bradyrx/climpred
base: master

Note that you can create the Pull Request while you’re working on this. The PR will update as you add more commits.
climpred developers and contributors can then review your code and offer suggestions.

2.16 Release Procedure

We follow semantic versioning, e.g., v1.0.0. A major version causes incompatible API changes, a minor version adds
functionality, and a patch covers bug fixes.

1. Create a new branch release-vX.x.x with the version for the release.

• Update CHANGELOG.rst

• Make sure all new changes, features are reflected in the documentation.

1. Open a new pull request for this branch targeting master

2. After all tests pass and the PR has been approved, merge the PR into master

3. Tag a release and push to github:

$ git tag -a v1.0.0 -m "Version 1.0.0"
$ git push origin master --tags

4. Build and publish release on PyPI:

$ git clean -xfd # remove any files not checked into git
$ python setup.py sdist bdist_wheel --universal # build package
$ twine upload dist/* # register and push to pypi

5. Update the stable branch (used by ReadTheDocs):

$ git checkout stable
$ git rebase master
$ git push -f origin stable
$ git checkout master

6. Update climpred conda-forge feedstock

• Fork climpred-feedstock repository

• Clone this fork and edit recipe:

2.16. Release Procedure 85

https://github.com/conda-forge/climpred-feedstock

climpred

$ git clone git@github.com:username/climpred-feedstock.git
$ cd climpred-feedstock
$ cd recipe
$ # edit meta.yaml

• Update version

• Get sha256 from pypi.org for climpred

• Fill in the rest of information as described here

• Commit and submit a PR

2.17 Contributors

2.17.1 Core Developers

• Riley X. Brady (github)

• Aaron Spring (github)

2.17.2 Contributors

• Andrew Huang (github)

For a list of all the contributions, see the github contribution graph.

86 Chapter 2. Installation

https://pypi.org/project/climpred/#files
https://github.com/conda-forge/climpred-feedstock#updating-climpred-feedstock
https://github.com/bradyrx/
https://github.com/aaronspring/
https://github.com/ahuang11/
https://github.com/bradyrx/climpred/graphs/contributors

Bibliography

[EOS] https://eos.org/opinions/climate-and-other-models-may-be-more-accurate-than-reported

[Jolliffe2011] Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A Practitioner’s Guide in Atmospheric
Science. John Wiley & Sons, Ltd, Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-0-470-
66071-3. URL: http://doi.wiley.com/10.1002/9781119960003.

[Murphy1988] Allan H. Murphy. Skill Scores Based on the Mean Square Error and Their Relationships to the Correla-
tion Coefficient. Monthly Weather Review, 116(12):2417–2424, December 1988. https://doi.org/10/fc7mxd.

[Boer2016] Boer, G. J., D. M. Smith, C. Cassou, F. Doblas-Reyes, G. Danabasoglu, B. Kirtman, Y. Kushnir, et al.
“The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6.” Geosci. Model Dev. 9, no. 10
(October 25, 2016): 3751–77. https://doi.org/10/f89qdf.

[Bushuk2018] Mitchell Bushuk, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati,
and Rich Gudgel. Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill.
Climate Dynamics, June 2018. https://doi.org/10/gd7hfq.

[Griffies1997] S. M. Griffies and K. Bryan. A predictability study of simulated North Atlantic multidecadal vari-
ability. Climate Dynamics, 13(7-8):459–487, August 1997. https://doi.org/10/ch4kc4.

[Seferian2018] Roland Séférian, Sarah Berthet, and Matthieu Chevallier. Assessing the Decadal Predictability of Land
and Ocean Carbon Uptake. Geophysical Research Letters, March 2018. https://doi.org/10/gdb424.

[Griffies1997] Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Vari-
ability.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4

[Boer2016] Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y.,
Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-
Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci.
Model Dev., 9, 3751-3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016.

[Meehl2013] Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., . . . & Karspeck, A.
(2014). Decadal climate prediction: an update from the trenches. Bulletin of the American Meteorological
Society, 95(2), 243-267. https://doi.org/10.1175/BAMS-D-12-00241.1.

[Jolliffe2012] Jolliffe, Ian T., and David B. Stephenson, eds. Forecast verification: a practitioner’s guide in atmo-
spheric science. John Wiley & Sons, 2012.

[Yuan2016] Yuan, Xiaojun, et al. “Arctic sea ice seasonal prediction by a linear Markov model.” Journal of Climate
29.22 (2016): 8151-8173.

87

https://eos.org/opinions/climate-and-other-models-may-be-more-accurate-than-reported
http://doi.wiley.com/10.1002/9781119960003
https://doi.org/10/fc7mxd
https://doi.org/10/f89qdf
https://doi.org/10/gd7hfq
https://doi.org/10/ch4kc4
https://doi.org/10/gdb424
https://doi.org/10/ch4kc4
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.1175/BAMS-D-12-00241.1

climpred

88 Bibliography

Index

Symbols
__init__() (climpred.classes.HindcastEnsemble

method), 55, 56
__init__() (climpred.classes.PerfectModelEnsemble

method), 59, 60
__init__() (climpred.comparisons.Comparison

method), 72
__init__() (climpred.metrics.Metric method), 70
_bias() (in module climpred.metrics), 44
_bias_slope() (in module climpred.metrics), 45
_brier_score() (in module climpred.metrics), 48
_conditional_bias() (in module

climpred.metrics), 45
_crps() (in module climpred.metrics), 46
_crpss() (in module climpred.metrics), 46
_crpss_es() (in module climpred.metrics), 47
_get_norm_factor() (in module climpred.metrics),

71
_mad() (in module climpred.metrics), 39
_mae() (in module climpred.metrics), 38
_mape() (in module climpred.metrics), 42
_mse() (in module climpred.metrics), 37
_msss_murphy() (in module climpred.metrics), 45
_nmae() (in module climpred.metrics), 40
_nmse() (in module climpred.metrics), 39
_nrmse() (in module climpred.metrics), 41
_pearson_r() (in module climpred.metrics), 36
_ppp() (in module climpred.metrics), 41
_rmse() (in module climpred.metrics), 38
_smape() (in module climpred.metrics), 43
_spearman_r() (in module climpred.metrics), 36
_std_ratio() (in module climpred.metrics), 44
_threshold_brier_score() (in module

climpred.metrics), 49
_uacc() (in module climpred.metrics), 43

A
add_control() (climpred.classes.PerfectModelEnsemble

method), 60

add_reference() (climpred.classes.HindcastEnsemble
method), 56

add_uninitialized()
(climpred.classes.HindcastEnsemble method),
56

autocorr() (in module climpred.stats), 73

B
bootstrap() (climpred.classes.PerfectModelEnsemble

method), 61
bootstrap_compute() (in module

climpred.bootstrap), 63
bootstrap_hindcast() (in module

climpred.bootstrap), 64
bootstrap_perfect_model() (in module

climpred.bootstrap), 65
bootstrap_uninit_pm_ensemble_from_control()

(in module climpred.bootstrap), 66
bootstrap_uninitialized_ensemble() (in

module climpred.bootstrap), 67

C
Comparison (class in climpred.comparisons), 72
compute_hindcast() (in module

climpred.prediction), 68
compute_metric() (climpred.classes.HindcastEnsemble

method), 57
compute_metric() (climpred.classes.PerfectModelEnsemble

method), 62
compute_perfect_model() (in module

climpred.prediction), 69
compute_persistence()

(climpred.classes.HindcastEnsemble method),
57

compute_persistence()
(climpred.classes.PerfectModelEnsemble
method), 62

compute_persistence() (in module
climpred.prediction), 69

89

climpred

compute_uninitialized()
(climpred.classes.HindcastEnsemble method),
58

compute_uninitialized()
(climpred.classes.PerfectModelEnsemble
method), 62

compute_uninitialized() (in module
climpred.prediction), 70

control (climpred.classes.PerfectModelEnsemble at-
tribute), 59, 60

corr() (in module climpred.stats), 73

D
decorrelation_time() (in module climpred.stats),

74
dpp() (in module climpred.stats), 74
dpp_threshold() (in module climpred.bootstrap),

67

G
generate_uninitialized()

(climpred.classes.PerfectModelEnsemble
method), 63

get_control() (climpred.classes.PerfectModelEnsemble
method), 60

get_initialized()
(climpred.classes.HindcastEnsemble method),
56

get_initialized()
(climpred.classes.PerfectModelEnsemble
method), 60

get_reference() (climpred.classes.HindcastEnsemble
method), 57

get_uninitialized()
(climpred.classes.HindcastEnsemble method),
57

get_uninitialized()
(climpred.classes.PerfectModelEnsemble
method), 61

H
HindcastEnsemble (class in climpred.classes), 55

L
load_dataset() (in module climpred.tutorial), 76

M
Metric (class in climpred.metrics), 70

P
PerfectModelEnsemble (class in climpred.classes),

59

R
reference (climpred.classes.HindcastEnsemble at-

tribute), 55, 56
rm_poly() (in module climpred.stats), 75
rm_trend() (in module climpred.stats), 75

S
smooth() (climpred.classes.HindcastEnsemble

method), 58
smooth_kws (climpred.classes.HindcastEnsemble at-

tribute), 58

U
uninitialized (climpred.classes.HindcastEnsemble

attribute), 55
uninitialized (climpred.classes.PerfectModelEnsemble

attribute), 59
uninitialized (in module climpred.classes), 56, 60

V
varweighted_mean_period() (in module

climpred.stats), 75
varweighted_mean_period_threshold() (in

module climpred.bootstrap), 68

90 Index

	Version 1 Release
	Installation
	Bibliography
	Index

