
climpred

Sep 23, 2019

Getting Started

1 Version 1 Release 3

2 Installation 5

Bibliography 53

Index 55

i

ii

climpred

Getting Started 1

https://travis-ci.org/bradyrx/climpred
https://www.codacy.com/app/bradyrx/climpred?utm_source=github.com&utm_medium=referral&utm_content=bradyrx/climpred&utm_campaign=Badge_Grade
https://pypi.python.org/pypi/climpred/
https://anaconda.org/conda-forge/climpred
https://coveralls.io/github/bradyrx/climpred?branch=master
https://climpred.readthedocs.io/en/latest/?badge=latest
../../LICENSE.txt

climpred

2 Getting Started

CHAPTER 1

Version 1 Release

v1.0.1 of climpred is our first bare-bones release to the community. We currently only support annual forecasts,
but our focus is to support sub-annual (e.g., seasonal, monthly, weekly, daily) in our next major release. We provide a
host of deterministic metrics, as well as some probabilistic metrics, although the latter have not been tested rigorously.
We support both perfect-model and hindcast prediction ensembles, and provide PerfectModelEnsemble and
HindcastEnsemble classes to make analysis easier.

See quick start and our examples to get started.

3

https://climpred.readthedocs.io/en/latest/metrics.html
https://climpred.readthedocs.io/en/latest/quick-start.html
https://climpred.readthedocs.io/en/latest/examples.html

climpred

4 Chapter 1. Version 1 Release

CHAPTER 2

Installation

You can install the latest release of climpred using pip or conda:

pip install climpred

conda install -c conda-forge climpred

You can also install the bleeding edge (pre-release versions) by cloning this repository and running pip install
. --upgrade in the main directory

Getting Started

• Overview: Why climpred?

• Scope of climpred

• Quick Start

• Examples

2.1 Overview: Why climpred?

There are many packages out there related to computing metrics on initialized geoscience predictions. However, we
didn’t find any one package that unified all our needs.

Output from decadal climate prediction experiments is difficult to work with. A typical output file could con-
tain the dimensions initialization, lead time, ensemble member, latitude, longitude, depth.
climpred leverages the labeled dimensions of xarray to handle the headache of bookkeeping for you. We offer
HindcastEnsemble and PerfectModelEnsemble objects that carry references (e.g., control runs, reconstruc-
tions, uninitialized ensembles) along with your decadal prediction output.

When computing lead-dependent skill scores, climpred handles all of the lag-correlating for you. We offer
a suite of vectorized deterministic and probabilistic metrics that can be applied to time series and grids. It’s
as easy as adding your decadal prediction output to an object and running compute: HindcastEnsemble.
compute_metric(metric='rmse').

5

climpred

2.2 Scope of climpred

climpred aims to be the primary package used to analyze output from initialized dynamical forecast models, ranging
from short-term weather forecasts to decadal climate forecasts. The code base will be driven entirely by the geoscien-
tific prediction community through open source development. It leverages xarray to keep track of core prediction
ensemble dimensions (e.g., ensemble member, initialization date, and lead time) and dask to perform out-of-memory
computations on large datasets.

The primary goal of climpred is to offer a comprehensive set of analysis tools for assessing the forecasts relative
to references (e.g., observations, reanalysis products, control runs, baseline forecasts). This will range from simple
deterministic and probabilistic verification metrics—such as mean absolute error and various skill scores—to more
advanced analysis methods, such as relative entropy and mutual information. climpred expects users to handle their
domain-specific post-processing of model output, so that the package can focus on the actual analysis of forecasts.

Finally, the climpred documentation will serve as a repository of unified analysis methods through jupyter notebook
examples, and will also collect relevant references and literature.

2.3 Quick Start

The easiest way to get up and running is to load in one of our example datasets (or load in some data of your own) and
to convert them to either a HindcastEnsemble or PerfectModelEnsemble object.

climpred provides example datasets from the MPI-ESM-LR decadal prediction ensemble and the CESM decadal
prediction ensemble. See our examples to see some analysis cases.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import xarray as xr

from climpred import HindcastEnsemble
import climpred

You can view the datasets available to be loaded with the load_datasets() command without passing any argu-
ments:

[2]: climpred.tutorial.load_dataset()

’MPI-control-1D’: area averages for the MPI control run of SST/SSS.
’MPI-control-3D’: lat/lon/time for the MPI control run of SST/SSS.
’MPI-PM-DP-1D’: perfect model decadal prediction ensemble area averages of SST/SSS/
→˓AMO.
’MPI-PM-DP-3D’: perfect model decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
’CESM-DP-SST’: hindcast decadal prediction ensemble of global mean SSTs.
’CESM-DP-SSS’: hindcast decadal prediction ensemble of global mean SSS.
’CESM-DP-SST-3D’: hindcast decadal prediction ensemble of eastern Pacific SSTs.
’CESM-LE’: uninitialized ensemble of global mean SSTs.
’MPIESM_miklip_baseline1-hind-SST-global’: hindcast initialized ensemble of global
→˓mean SSTs
’MPIESM_miklip_baseline1-hist-SST-global’: uninitialized ensemble of global mean SSTs
’MPIESM_miklip_baseline1-assim-SST-global’: assimilation in MPI-ESM of global mean
→˓SSTs
’ERSST’: observations of global mean SSTs.
’FOSI-SST’: reconstruction of global mean SSTs.
’FOSI-SSS’: reconstruction of global mean SSS.
’FOSI-SST-3D’: reconstruction of eastern Pacific SSTs

6 Chapter 2. Installation

https://climpred.readthedocs.io/en/latest/examples.html

climpred

From here, loading a dataset is easy. Note that you need to be connected to the internet for this to work – the datasets
are being pulled from the climpred-data repository. Once loaded, it is cached on your computer so you can reload
extremely quickly. These datasets are very small (< 1MB each) so they won’t take up much space.

[3]: hind = climpred.tutorial.load_dataset('CESM-DP-SST')
obs = climpred.tutorial.load_dataset('ERSST')

Make sure your prediction ensemble’s dimension labeling conforms to climpred’s standards. In other words, you
need an init, lead, and (optional) member dimension. Make sure that your init and lead dimensions align.
E.g., a November 1st, 1954 initialization should be labeled as init=1954 so that the lead=1 forecast is 1955.

[4]: print(hind)

<xarray.Dataset>
Dimensions: (init: 64, lead: 10, member: 10)
Coordinates:

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

* member (member) int32 1 2 3 4 5 6 7 8 9 10

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0
Data variables:

SST (init, lead, member) float64 ...

We’ll quickly process the data to create anomalies. CESM-DPLE’s drift-correction occurs over 1964-2014, so we’ll
remove that from the observations.

[5]: # subtract climatology
obs = obs - obs.sel(time=slice(1964, 2014)).mean()

detrend
obs = climpred.stats.rm_trend(obs, dim='time')
hind = climpred.stats.rm_trend(hind, dim='init')

We can now create a HindcastEnsemble object and add our references.

[6]: hindcast = HindcastEnsemble(hind)
hindcast.add_reference(obs, 'observations')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, member) float64 0.005165 0.03014 ... 0.1842 0.1812
observations:

SST (time) float32 -0.061960407 -0.023283795 ... 0.072058104 0.165859
Uninitialized:

None

Now we’ll quickly calculate skill and persistence. We have a variety of possible metrics to use.

[7]: init = hindcast.compute_metric(metric='pr')
persistence = hindcast.compute_persistence(metric='pr')

[8]: plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
init.SST.plot(marker='o', markersize=10, label='skill')
persistence.SST.plot(marker='o', markersize=10, label='persistence',

color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Predictability',

(continues on next page)

2.3. Quick Start 7

https://climpred.readthedocs.io/en/latest/setting-up-data.html
https://climpred.readthedocs.io/en/latest/metrics.html

climpred

(continued from previous page)

ylabel='Anomaly \n Correlation Coefficient',
xlabel='Lead Year')

plt.show()

We can also check error in our forecasts.

[9]: init = hindcast.compute_metric(metric='rmse')
persistence = hindcast.compute_persistence(metric='rmse')

[10]: plt.style.use('fivethirtyeight')
f, ax = plt.subplots(figsize=(8, 3))
init.SST.plot(marker='o', markersize=10, label='skill')
persistence.SST.plot(marker='o', markersize=10, label='persistence',

color='#a9a9a9')
plt.legend()
ax.set(title='Global Mean SST Forecast Error',

ylabel='RMSE',
xlabel='Lead Year')

plt.show()

8 Chapter 2. Installation

climpred

2.4 Examples

2.4.1 Demo of Perfect Model Predictability Functions

This demo demonstrates climpred’s capabilities for a perfect-model framework ensemble simulation.

What’s a perfect-model framework simulation?

A perfect-model framework uses a set of ensemble simulations that are based on a General Circulation Model (GCM)
or Earth System Model (ESM) alone. There is no use of any reanalysis, reconstruction, or data product to initialize the
decadal prediction ensemble. An arbitrary number of members are initialized from perturbed initial conditions (the
“ensemble”), and the control simulation can be viewed as just another member.

How to compare predictability skill score: As no observational data interferes with the random climate evolution
of the model, we cannot use an observation-based reference for computing skill scores. Therefore, we can compare
the members with one another (m2m), against the ensemble mean (m2e), or against the control (m2c). We can also
compare the ensemble mean to the control (e2c). See the comparisons page for more information.

When to use perfect-model frameworks:

• You don’t have a sufficiently long observational record to use as a reference.

• You want to avoid biases between model climatology and reanalysis climatology.

• You want to avoid sensitive reactions of biogeochemical cycles to disruptive changes in ocean physics due to
assimilation.

• You want to delve into process understanding of predictability in a model without outside artifacts.

[1]: import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

import climpred

[2]: warnings.filterwarnings("ignore")

Load sample data

Here we use a subset of ensembles and members from the MPI-ESM-LR (CMIP6 version) esmControl simulation of
an early state. This corresponds to vga0214 from year 3000 to 3300.

1-dimensional output

Our 1D sample output contains datasets of time series of certain spatially averaged area (‘global’, ‘North_Atlantic’)
and temporally averaged period (‘ym’, ‘DJF’, . . .) for some lead years (1, . . . , 20).

ds: The ensemble dataset of all members (1, . . . , 10), inits (initialization years: 3014, 3023, . . . , 3257), areas,
periods, and lead years.

control: The control dataset with the same areas and periods, as well as the years 3000 to 3299.

[3]: ds = climpred.tutorial.load_dataset('MPI-PM-DP-1D')
control = climpred.tutorial.load_dataset('MPI-control-1D')

2.4. Examples 9

https://climpred.readthedocs.io/en/latest/comparisons.html

climpred

We’ll sub-select annual means (‘ym’) of sea surface temperature (‘tos’) in the North Atlantic.

[4]: varname = 'tos'
area = 'North_Atlantic'
period = 'ym'

[5]: ds = ds.sel(area=area, period=period)[varname]
control = control.sel(area=area, period=period)[varname]
ds = ds.reset_coords(drop=True)
control = control.reset_coords(drop=True)

Bootstrapping with Replacement

Here, we bootstrap the ensemble with replacement [Goddard et al. 2013] to compare the initialized ensemble to an
“uninitialized” counterpart and a persistence forecast. The visualization is based on those used in [Li et al. 2016]. The
p-value demonstrates the probability that the uninitialized or persistence beats the initialized forecast based on N=100
bootstrapping with replacement.

[7]: for metric in ['pearson_r', 'rmse']:
bootstrapped = climpred.bootstrap.bootstrap_perfect_model(ds,

control,
metric=metric,
comparison='m2e',
bootstrap=100,
sig=95)

climpred.graphics.plot_bootstrapped_skill_over_leadyear(bootstrapped, sig)
plt.title(' '.join([varname, area, period, metric]),fontsize=18)
plt.ylabel(metric)
plt.show()

10 Chapter 2. Installation

climpred

Computing Skill with Different Comparison Methods

Here, we use compute_perfect_model to compute the Anomaly Correlation Coefficient (ACC) with different
comparison methods. This generates different ACC values by design. See the comparisons page for a description of
the various ways to compute skill scores for a perfect-model framework.

[8]: for c in ['e2c','m2c','m2e','m2m']:
climpred.prediction.compute_perfect_model(ds,

control,
metric='pearson_r',
comparison=c).plot(label=c)

Persistence computation for a baseline.
climpred.prediction.compute_persistence(ds, control).plot(label='persistence', ls=':')
plt.ylabel('ACC')
plt.xticks(np.arange(1,21))
plt.legend()
plt.title('Different forecast-reference comparisons for pearson_r \n lead to
→˓systematically different magnitude of skill score')
plt.show()

2.4. Examples 11

https://climpred.readthedocs.io/en/latest/comparisons.html

climpred

3-dimensional output (maps)

We also have some sample output that contains gridded time series on the curvilinear MPI grid. Our compute functions
(compute_perfect_model, compute_persistence) are indifferent to any dimensions that exist in addition
to init, member, and lead. In other words, the functions are set up to make these computations on a grid, if one
includes lat, lon, lev, depth, etc.

ds3d: The ensemble dataset of members (1, 2, 3, 4), inits (initialization years: 3014, 3061, 3175, 3237), and
lead years (1, 2, 3, 4, 5).

control3d: The control dataset spanning (3000, . . . , 3049).

Note: These are very small subsets of the actual MPI simulations so that we could host the sample output maps on
Github.

[7]: # Sea surface temperature
ds3d = climpred.tutorial.load_dataset('MPI-PM-DP-3D') \

.sel(init=3014) \

.expand_dims('init')[varname]
control3d = climpred.tutorial.load_dataset('MPI-control-3D')[varname]

Maps of Skill by Lead Year

[10]: climpred.prediction.compute_perfect_model(ds3d,
control3d,
metric='rmse',
comparison='m2e') \

.plot(col='lead', robust=True, yincrease=False)

[10]: <xarray.plot.facetgrid.FacetGrid at 0x1c2aebe8d0>

12 Chapter 2. Installation

climpred

Slow components of internal variability that indicate potential predictability

Here, we showcase a set of methods to show regions indicating probabilities for decadal predictability.

Diagnostic Potential Predictability (DPP)

We can first use the [Resplandy 2015] and [Seferian 2018] method for computing DPP, by not “chunking”.

[]: threshold = climpred.bootstrap.dpp_threshold(control3d,
m=10,
chunk=False,
bootstrap=10)

DPP10 = climpred.stats.dpp(control3d, m=10, chunk=False)
DPP10.where(DPP10 > threshold).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap=
→˓'viridis')

Now, we can turn on chunking (the default for this function) to use the [Boer 2004] method.

[19]: threshold = climpred.bootstrap.dpp_threshold(control3d,
m=10,
chunk=True,
bootstrap=bootstrap)

DPP10 = climpred.stats.dpp(control3d, m=10, chunk=True)
DPP10.where(DPP10>0).plot(yincrease=False, vmin=-0.1, vmax=0.6, cmap='viridis')

[19]: <matplotlib.collections.QuadMesh at 0x123e8c208>

2.4. Examples 13

climpred

Variance-Weighted Mean Period

[20]: threshold = climpred.bootstrap.varweighted_mean_period_threshold(control3d,
bootstrap=bootstrap)

vwmp = climpred.stats.varweighted_mean_period(control3d, time_dim='time')
vwmp.where(vwmp > threshold).plot(yincrease=False, robust=True)

[20]: <matplotlib.collections.QuadMesh at 0x123ea8860>

Lag-1 Autocorrelation

[21]: corr_ef = climpred.stats.autocorr(control3d, dim='time')
corr_ef.where(corr_ef>0).plot(yincrease=False, robust=False)

[21]: <matplotlib.collections.QuadMesh at 0x1c314b6860>

14 Chapter 2. Installation

climpred

Decorrelation time

[22]: decorr_time = climpred.stats.decorrelation_time(control3d)
decorr_time.where(decorr_time>0).plot(yincrease=False, robust=False)

[22]: <matplotlib.collections.QuadMesh at 0x1c2e3a14a8>

References

1. Boer, Georges J. “Long time-scale potential predictability in an ensemble of coupled climate models.” Climate
dynamics 23.1 (2004): 29-44.

2. Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and Rich
Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.” Climate
Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

3. Collins, Matthew, and Sinha Bablu. “Predictability of Decadal Variations in the Thermohaline Circulation and
Climate.” Geophysical Research Letters 30, no. 6 (March 22, 2003). https://doi.org/10/cts3cr.

4. Goddard, Lisa, et al. “A verification framework for interannual-to-decadal predictions experiments.” Climate
Dynamics 40.1-2 (2013): 245-272.

5. Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variability.”
Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

6. Hawkins, Ed, Steffen Tietsche, Jonathan J. Day, Nathanael Melia, Keith Haines, and Sarah Keeley. “Aspects of
Designing and Evaluating Seasonal-to-Interannual Arctic Sea-Ice Prediction Systems.” Quarterly Journal of the
Royal Meteorological Society 142, no. 695 (January 1, 2016): 672–83. https://doi.org/10/gfb3pn.

7. Li, Hongmei, Tatiana Ilyina, Wolfgang A. Müller, and Frank Sienz. “Decadal Predictions of the North Atlantic
CO2 Uptake.” Nature Communications 7 (March 30, 2016): 11076. https://doi.org/10/f8wkrs.

8. Pohlmann, Holger, Michael Botzet, Mojib Latif, Andreas Roesch, Martin Wild, and Peter Tschuck. “Estimating
the Decadal Predictability of a Coupled AOGCM.” Journal of Climate 17, no. 22 (November 1, 2004): 4463–72.
https://doi.org/10/d2qf62.

9. Resplandy, Laure, R. Séférian, and L. Bopp. “Natural variability of CO2 and O2 fluxes: What can we learn from
centuries-long climate models simulations?.” Journal of Geophysical Research: Oceans 120.1 (2015): 384-404.

2.4. Examples 15

https://doi.org/10/gd7hfq
https://doi.org/10/cts3cr
https://doi.org/10/ch4kc4
https://doi.org/10/gfb3pn
https://doi.org/10/f8wkrs
https://doi.org/10/d2qf62

climpred

10. Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the Decadal Predictability of Land and
Ocean Carbon Uptake.” Geophysical Research Letters, March 15, 2018. https://doi.org/10/gdb424.

2.4.2 Hindcast Predictions of Equatorial Pacific SSTs

In this example, we evaluate hindcasts (retrospective forecasts) of sea surface temperatures in the eastern equatorial
Pacific from CESM-DPLE. These hindcasts are evaluated against a forced ocean–sea ice simulation that initializes the
model.

See the quick start for an analysis of time series (rather than maps) from a hindcast prediction ensemble.

[1]: import warnings

import cartopy.crs as ccrs
import cartopy.feature as cfeature
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import climpred
from climpred import HindcastEnsemble

[2]: warnings.filterwarnings("ignore")

We’ll load in a small region of the eastern equatorial Pacific for this analysis example.

[3]: climpred.tutorial.load_dataset()

’MPI-control-1D’: decadal prediction ensemble area averages of SST/SSS/AMO.
’MPI-control-3D’: decadal prediction ensemble lat/lon/time of SST/SSS/AMO.
’MPI-PM-DP-1D’: area averages for the control run of SST/SSS.
’MPI-PM-DP-3D’: lat/lon/time for the control run of SST/SSS.
’CESM-DP-SST’: decadal prediction ensemble of global mean SSTs.
’CESM-DP-SSS’: decadal prediction ensemble of global mean SSS.
’CESM-DP-SST-3D’: decadal prediction ensemble of eastern Pacific SSTs.
’CESM-LE’: uninitialized ensemble of global mean SSTs.
’MPIESM_miklip_baseline1-hind-SST-global’: initialized ensemble of global mean SSTs
’MPIESM_miklip_baseline1-hist-SST-global’: uninitialized ensemble of global mean SSTs
’MPIESM_miklip_baseline1-assim-SST-global’: assimilation in MPI-ESM of global mean
→˓SSTs
’ERSST’: observations of global mean SSTs.
’FOSI-SST’: reconstruction of global mean SSTs.
’FOSI-SSS’: reconstruction of global mean SSS.
’FOSI-SST-3D’: reconstruction of eastern Pacific SSTs

[4]: hind = climpred.tutorial.load_dataset('CESM-DP-SST-3D')['SST']
recon = climpred.tutorial.load_dataset('FOSI-SST-3D')['SST']
print(hind)

<xarray.DataArray ’SST’ (init: 64, lead: 10, nlat: 37, nlon: 26)>
[615680 values with dtype=float32]
Coordinates:

TLAT (nlat, nlon) float64 ...
TLONG (nlat, nlon) float64 ...

* init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0

* lead (lead) int32 1 2 3 4 5 6 7 8 9 10

(continues on next page)

16 Chapter 2. Installation

https://doi.org/10/gdb424
https://climpred.readthedocs.io/en/latest/quick-start.html

climpred

(continued from previous page)

TAREA (nlat, nlon) float64 ...
Dimensions without coordinates: nlat, nlon

These two example products cover a small portion of the eastern equatorial Pacific.

[5]: ax = plt.axes(projection=ccrs.Orthographic(-80, 0))
p = ax.pcolormesh(recon.TLONG, recon.TLAT, recon.mean('time'),

transform=ccrs.PlateCarree(), cmap='twilight')
ax.add_feature(cfeature.LAND, color='#d3d3d3')
ax.set_global()
plt.colorbar(p, label='Sea Surface Temperature [degC]')
ax.set(title='Example Data Coverage')

[5]: [Text(0.5, 1.0, 'Example Data Coverage')]

We first need to remove the same climatology that was used to drift-correct the CESM-DPLE. Then we’ll create a
detrended version of our two products to assess detrended predictability.

[6]: # Remove 1964-2014 climatology.
recon = recon - recon.sel(time=slice(1964, 2014)).mean('time')

Remove trend to look at anomalies.
recon = climpred.stats.rm_trend(recon, dim='time')
hind = climpred.stats.rm_trend(hind, dim='init')

Although functions can be called directly in climpred, we suggest that you use our classes (HindcastEnsemble
and PerfectModelEnsemble) to make analysis code cleaner.

[7]: hindcast = HindcastEnsemble(hind)
hindcast.add_reference(recon, 'reconstruction')
print(hindcast)

<climpred.HindcastEnsemble>
Initialized Ensemble:

SST (init, lead, nlat, nlon) float32 -0.29811984 ... 0.5265896
reconstruction:

SST (time, nlat, nlon) float32 0.2235269 0.22273289 ... 1.3010706
Uninitialized:

None

2.4. Examples 17

climpred

Anomaly Correlation Coefficient of SSTs

We can now compute the ACC over all leads and all grid cells.

[8]: predictability = hindcast.compute_metric(metric='acc')
`compute_metric` dropped the TLAT coordinate for some reason. This will
be fixed in a later version of `climpred`.
predictability['TLAT'] = recon['TLAT']
predictability = predictability.set_coords('TLAT')

We use the pval keyword to get associated p-values for our ACCs. We can then mask our final maps based on
𝛼 = 0.05.

[9]: significance = hindcast.compute_metric(metric='pval')

`compute_metric` dropped the TLAT coordinate for some reason. This will
be fixed in a later version of `climpred`.
significance['TLAT'] = recon['TLAT']
significance = significance.set_coords('TLAT')

Mask latitude and longitude by significance for stippling.
siglat = significance.TLAT.where(significance.SST <= 0.05)
siglon = significance.TLONG.where(significance.SST <= 0.05)

[10]: p = predictability.SST.plot.pcolormesh(x='TLONG', y='TLAT',
transform=ccrs.PlateCarree(),
col='lead', col_wrap=5,
subplot_kws={'projection': ccrs.PlateCarree(),

'aspect': 3},
cbar_kwargs={'label': 'Anomaly Correlation

→˓Coefficient'},
vmin=-0.7, vmax=0.7,
cmap='RdYlBu_r')

for i, ax in enumerate(p.axes.flat):
ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
ax.gridlines(alpha=0.3, color='k', linestyle=':')
Add significance stippling
ax.scatter(siglon.isel(lead=i),

siglat.isel(lead=i),
color='k',
marker='.',
s=1.5,
transform=ccrs.PlateCarree())

18 Chapter 2. Installation

climpred

Root Mean Square Error of SSTs

We can also check error in our forecasts, just by changing the metric keyword.

[11]: rmse = hindcast.compute_metric(metric='rmse')
rmse['TLAT'] = recon['TLAT']
rmse = rmse.set_coords('TLAT')

[12]: p = rmse.SST.plot.pcolormesh(x='TLONG', y='TLAT',
transform=ccrs.PlateCarree(),
col='lead', col_wrap=5,
subplot_kws={'projection': ccrs.PlateCarree(),

'aspect': 3},
cbar_kwargs={'label': 'Root Mean Square Error (degC)'},
cmap='Purples')

for ax in p.axes.flat:
ax.add_feature(cfeature.LAND, color='#d3d3d3', zorder=4)
ax.gridlines(alpha=0.3, color='k', linestyle=':')

2.4. Examples 19

climpred

User Guide

• Setting Up Your Dataset

• Comparisons

• Metrics

• Prediction Terminology

• Baseline Forecasts

2.5 Setting Up Your Dataset

climpred relies on a consistent naming system for xarray dimensions. This allows things to run more easily
under-the-hood.

Prediction ensembles are expected at the minimum to contain dimensions init and lead. init is the initialization
dimension, that relays the time steps at which the ensemble was initialized. lead is the lead time of the forecasts
from initialization. Another crucial dimension is member, which holds the various ensemble members. Any additional
dimensions will be passed through climpred without issue: these could be things like lat, lon, depth, etc.

Control runs, references, and observational products are expected to contain the time dimension at the minimum.
For best use of climpred, their time dimension should cover the full length of init from the accompanying
prediction ensemble, if possible. These products can also include additional dimensions, such as lat, lon, depth,
etc.

See the below table for a summary of dimensions used in climpred, and data types that climpred supports for
them.

short_name types long_name
lead int lead timestep after initialization [init]
init int initialization: start date of experiment
member int, str ensemble member

2.6 Metrics

All high-level functions have an optional metric argument that can be called to determine which metric is used in
computing predictability (potential predictability or prediction skill).

Note: We use the phrase ‘observations’ o here to refer to the ‘truth’ data to which we compare the forecast f. These
metrics can also be applied in reference to a control simulation, reconstruction, observations, etc. This would just
change the resulting score from referencing skill to referencing potential predictability.

Internally, all metric functions require forecast and reference as inputs. The dimension
dim is set by climpred.prediction.compute_hindcast() or climpred.prediction.
compute_perfect_model() to specify over which dimensions the metric is applied. See Comparisons.

2.6.1 Deterministic

Deterministic metrics quantify the level to which the forecast predicts the observations. These metrics are just a special
case of probabilistic metrics where a value of 100% is assigned to the forecasted value [Jolliffe2011].

20 Chapter 2. Installation

climpred

Core Metrics

Anomaly Correlation Coefficient (ACC)

keyword: 'pearson_r','pr','acc'

A measure of the linear association between the forecast and observations that is independent of the mean and variance
of the individual distributions [Jolliffe2011]. climpred uses the Pearson correlation coefficient.

climpred.metrics._pearson_r(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate the Anomaly Correlation Coefficient (ACC).

𝐴𝐶𝐶 =
𝑐𝑜𝑣(𝑓, 𝑜)

𝜎𝑓 · 𝜎𝑜

Note: Use metric pearson_r_p_value to get the corresponding pvalue.

Range:

• perfect: 1

• min: -1

See also:

• xskillscore.pearson_r

• xskillscore.pearson_r_p_value

Mean Squared Error (MSE)

keyword: 'mse'

The average of the squared difference between forecasts and observations. This incorporates both the variance and
bias of the estimator.

climpred.metrics._mse(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate the Mean Sqaure Error (MSE).

𝑀𝑆𝐸 = (𝑓 − 𝑜)2

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.mse

2.6. Metrics 21

climpred

Root Mean Square Error (RMSE)

keyword: 'rmse'

The square root of the average of the squared differences between forecasts and observations [Jolliffe2011]. It puts a
greater influence on large errors than small errors, which makes this a good choice if large errors are undesirable or
one wants to be a more conservative forecaster.

climpred.metrics._rmse(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate the Root Mean Sqaure Error (RMSE).

𝑅𝑀𝑆𝐸 =

√︁
(𝑓 − 𝑜)2

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.rmse

Mean Absolute Error (MAE)

keyword: 'mae'

The average of the absolute differences between forecasts and observations [Jolliffe2011]. A more robust measure of
forecast accuracy than root mean square error or mean square error which is sensitive to large outlier forecast errors
[EOS].

climpred.metrics._mae(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate the Mean Absolute Error (MAE).

𝑀𝑆𝐸 = (𝑓 − 𝑜)2

Range:

• perfect: 0

• min: 0

• max: ∞

See also:

• xskillscore.mae

Derived Metrics

Distance-based metrics like mse can be normalized to 1. The normalization factor depends on the comparison type
choosen, eg. the distance between an ensemble member and the ensemble mean is half the distance of an ensemble
member with other ensemble members. (see climpred.metrics._get_norm_factor()).

22 Chapter 2. Installation

climpred

Normalized Mean Square Error (NMSE)

keyword: 'nmse','nev'

climpred.metrics._nmse(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate Normalized MSE (NMSE) = Normalized Ensemble Variance (NEV).

𝑁𝑀𝑆𝐸 = 𝑁𝐸𝑉 =
𝑀𝑆𝐸

𝜎2
𝑜 · 𝑓𝑎𝑐

Parameters

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor (required to be
added via **metric_kwargs)

Range:

• 0: perfect forecast: 0

• 0 - 1: better than climatology forecast

• > 1: worse than climatology forecast

References

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variabil-
ity.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

Normalized Mean Absolute Error (NMAE)

keyword: 'nmae'

climpred.metrics._nmae(forecast, reference, dim=’svd’, **metric_kwargs)
Normalized Ensemble Mean Absolute Error metric.

𝑁𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝜎𝑜 · 𝑓𝑎𝑐

Parameters

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor (required to be
added via **metric_kwargs)

Range:

• 0: perfect forecast: 0

• 0 - 1: better than climatology forecast

• > 1: worse than climatology forecast

2.6. Metrics 23

https://doi.org/10/ch4kc4

climpred

References

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variabil-
ity.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

Normalized Root Mean Square Error (NRMSE)

keyword: 'nrmse'

climpred.metrics._nrmse(forecast, reference, dim=’svd’, **metric_kwargs)
Normalized Root Mean Square Error (NRMSE) metric.

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎𝑜 ·
√
𝑓𝑎𝑐

=

√︃
𝑀𝑆𝐸

𝜎2
𝑜 · 𝑓𝑎𝑐

Parameters

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor (required to be
added via **metric_kwargs)

Range:

• 0: perfect forecast

• 0 - 1: better than climatology forecast

• > 1: worse than climatology forecast

References

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and
Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.”
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

• Hawkins, Ed, Steffen Tietsche, Jonathan J. Day, Nathanael Melia, Keith Haines, and Sarah Keeley. “As-
pects of Designing and Evaluating Seasonal-to-Interannual Arctic Sea-Ice Prediction Systems.” Quar-
terly Journal of the Royal Meteorological Society 142, no. 695 (January 1, 2016): 672–83. https:
//doi.org/10/gfb3pn.

Mean Square Skill Score (MSSS)

keyword: 'msss','ppp'

climpred.metrics._ppp(forecast, reference, dim=’svd’, **metric_kwargs)
Prognostic Potential Predictability (PPP) metric.

𝑃𝑃𝑃 = 1− 𝑀𝑆𝐸

𝜎2
𝑟𝑒𝑓 · 𝑓𝑎𝑐

Parameters

24 Chapter 2. Installation

https://doi.org/10/ch4kc4
https://doi.org/10/gd7hfq
https://doi.org/10/gfb3pn
https://doi.org/10/gfb3pn

climpred

• forecast (*) –

• reference (*) –

• dim (*) – dimension to apply metric to

• comparison (*) – name comparison needed for normalization factor (required to be
added via **metric_kwargs)

Range:

• 1: perfect forecast

• positive: better than climatology forecast

• negative: worse than climatology forecast

References

• Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Variabil-
ity.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4.

• Pohlmann, Holger, Michael Botzet, Mojib Latif, Andreas Roesch, Martin Wild, and Peter Tschuck. “Es-
timating the Decadal Predictability of a Coupled AOGCM.” Journal of Climate 17, no. 22 (November 1,
2004): 4463–72. https://doi.org/10/d2qf62.

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and
Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

Unbiased ACC

keyword: 'uacc'

climpred.metrics._uacc(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate Bushuk’s unbiased ACC (uACC).

𝑢𝐴𝐶𝐶 =
√
𝑃𝑃𝑃 =

√
𝑀𝑆𝑆𝑆

Range:

• 1: perfect

• 0 - 1: better than climatology

References

• Bushuk, Mitchell, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati, and
Rich Gudgel. “Regional Arctic Sea–Ice Prediction: Potential versus Operational Seasonal Forecast Skill.
Climate Dynamics, June 9, 2018. https://doi.org/10/gd7hfq.

Murphy decomposition metrics

[Murphy1988] relates the MSSS with ACC and unconditional bias.

2.6. Metrics 25

https://doi.org/10/ch4kc4
https://doi.org/10/d2qf62
https://doi.org/10/gd7hfq
https://doi.org/10/gd7hfq

climpred

Standard Ratio

keyword: 'std_ratio'

climpred.metrics._std_ratio(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate the ratio of standard deviations of reference over forecast.

std ratio =
𝜎𝑜

𝜎𝑓

References

• https://www-miklip.dkrz.de/about/murcss/

Unconditional Bias

keyword: 'bias', 'unconditional_bias', 'u_b'

climpred.metrics._bias(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate unconditional bias.

𝑏𝑖𝑎𝑠 = 𝑓 − 𝑜

Range:

• pos: positive bias

• neg: negative bias

• perfect: 0

References

• https://www.cawcr.gov.au/projects/verification/

• https://www-miklip.dkrz.de/about/murcss/

Bias Slope

keyword: 'bias_slope'

climpred.metrics._bias_slope(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate bias slope between reference and forecast standard deviations.

bias slope = 𝑟𝑓𝑜 · std ratio

References

• https://www-miklip.dkrz.de/about/murcss/

26 Chapter 2. Installation

https://www-miklip.dkrz.de/about/murcss/
https://www.cawcr.gov.au/projects/verification/
https://www-miklip.dkrz.de/about/murcss/
https://www-miklip.dkrz.de/about/murcss/

climpred

Conditional Bias

keyword: 'conditional_bias', c_b'

climpred.metrics._conditional_bias(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate the conditional bias between forecast and reference.

conditional bias = 𝑟𝑓𝑜 −
𝜎𝑓

𝜎𝑜

References

• https://www-miklip.dkrz.de/about/murcss/

Murphy’s Mean Square Skill Score

keyword: 'msss_murphy'

climpred.metrics._msss_murphy(forecast, reference, dim=’svd’, **metric_kwargs)
Calculate Murphy’s Mean Square Skill Score (MSSS).

𝑀𝑆𝑆𝑆𝑀𝑢𝑟𝑝ℎ𝑦 = 𝑟2𝑓𝑜 − [conditional bias]2 − [
(unconditional) bias

𝜎𝑜
]2

References

• https://www-miklip.dkrz.de/about/murcss/

• Murphy, Allan H. “Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation
Coefficient.” Monthly Weather Review 116, no. 12 (December 1, 1988): 2417–24. https://doi.org/10/
fc7mxd.

2.6.2 Probabilistic

keyword: 'crps'

climpred.metrics._crps(forecast, reference, **metric_kwargs)
Continuous Ranked Probability Score (CRPS) is the probabilistic MSE.

Range:

• perfect: 0

• min: 0

• max: ∞

References

• Matheson, James E., and Robert L. Winkler. “Scoring Rules for Continuous Probability Distributions.”
Management Science 22, no. 10 (June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.

See also:

• properscoring.crps_ensemble

2.6. Metrics 27

https://www-miklip.dkrz.de/about/murcss/
https://www-miklip.dkrz.de/about/murcss/
https://doi.org/10/fc7mxd
https://doi.org/10/fc7mxd
https://doi.org/10/cwwt4g

climpred

• xskillscore.crps_ensemble

keyword: 'crpss'

climpred.metrics._crpss(forecast, reference, **metric_kwargs)
Continuous Ranked Probability Skill Score

Note: When assuming a gaussian distribution of forecasts, use default gaussian=True. If not gaussian, you may
specify the distribution type, xmin/xmax/tolerance for integration (see xskillscore.crps_quadrature).

𝐶𝑅𝑃𝑆𝑆 = 1− 𝐶𝑅𝑃𝑆𝑖𝑛𝑖𝑡

𝐶𝑅𝑃𝑆𝑐𝑙𝑖𝑚

Parameters

• forecast (*) –

• reference (*) –

• gaussian (*) – Assuming gaussian distribution for baseline skill. Default: True (optional)

• cdf_or_dist (*) – distribution to assume if not gaussian. default: scipy.stats.norm

• xmin, xmax, tol (*) – only relevant if not gaussian (see xskillscore.crps_quadrature)

Range:

• perfect: 1

• pos: better than climatology forecast

• neg: worse than climatology forecast

References

• Matheson, James E., and Robert L. Winkler. “Scoring Rules for Continuous Probability Distributions.”
Management Science 22, no. 10 (June 1, 1976): 1087–96. https://doi.org/10/cwwt4g.

• Gneiting, Tilmann, and Adrian E Raftery. “Strictly Proper Scoring Rules, Prediction, and Estimation.”
Journal of the American Statistical Association 102, no. 477 (March 1, 2007): 359–78. https://doi.org/10/
c6758w.

Example

>>> compute_perfect_model(ds, control, metric='crpss')
>>> compute_perfect_model(ds, control, metric='crpss', gaussian=False,

cdf_or_dist=scipy.stats.norm, xmin=-10,
xmax=10, tol=1e-6)

See also:

• properscoring.crps_ensemble

• xskillscore.crps_ensemble

keyword: 'crpss_es'

28 Chapter 2. Installation

https://doi.org/10/cwwt4g
https://doi.org/10/c6758w
https://doi.org/10/c6758w

climpred

climpred.metrics._crpss_es(forecast, reference, **metric_kwargs)
CRPSS Ensemble Spread.

𝐶𝑅𝑃𝑆𝑆 = 1−
𝐶𝑅𝑃𝑆(𝜎2

𝑓)

𝐶𝑅𝑃𝑆(𝜎2
𝑜

))

References

• Kadow, Christopher, Sebastian Illing, Oliver Kunst, Henning W. Rust, Holger Pohlmann, Wolfgang A.
Müller, and Ulrich Cubasch. “Evaluation of Forecasts by Accuracy and Spread in the MiKlip Decadal
Climate Prediction System.” Meteorologische Zeitschrift, December 21, 2016, 631–43. https://doi.org/10/
f9jrhw.

Range:

• perfect: 0

• else: negative

keyword: 'brier_score', 'brier', 'bs'

climpred.metrics._brier_score(forecast, reference, **metric_kwargs)
Calculate Brier score for forecasts on binary reference.

..math: BS(f, o) = (f - o)^2

Parameters

• forecast (*) –

• reference (*) –

• func (*) – function to be applied to reference and forecasts and then mean(‘member’) to
get forecasts and reference in interval [0,1]. (required to be added via **metric_kwargs)

Reference:

• Brier, Glenn W. “VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF

PROBABILITY.” Monthly Weather Review 78, no. 1 (1950). https://doi.org/10.1175/
1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

Example

>>> def pos(x): return x > 0
>>> compute_perfect_model(ds, control, metric='brier_score', func=pos)

See also:

• properscoring.brier_score

• xskillscore.brier_score

keyword: 'threshold_brier_score', 'tbs'

2.6. Metrics 29

https://doi.org/10/f9jrhw
https://doi.org/10/f9jrhw
https://doi.org/10.1175/1520-0493(1950
https://doi.org/10.1175/1520-0493(1950

climpred

climpred.metrics._threshold_brier_score(forecast, reference, **metric_kwargs)
Calculate the Brier scores of an ensemble for exceeding given thresholds. Provide threshold via metric_kwargs.

𝐶𝑅𝑃𝑆(𝐹, 𝑥) =

∫︁
𝑧

𝐵𝑆(𝐹 (𝑧), 𝐻(𝑧 − 𝑥))𝑑𝑧

Range:

• perfect: 0

• min: 0

• max: 1

Parameters

• forecast (*) –

• reference (*) –

• threshold (*) – Threshold to check exceedance, see properscor-
ing.threshold_brier_score (required to be added via **metric_kwargs)

References

• Brier, Glenn W. “VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF

PROBABILITY.” Monthly Weather Review 78, no. 1 (1950). https://doi.org/10.1175/
1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

Example

>>> compute_perfect_model(ds, control,
metric='threshold_brier_score', threshold=.5)

See also:

• properscoring.threshold_brier_score

• xskillscore.threshold_brier_score

2.6.3 References

2.7 Comparisons

Forecast skill is always evaluated against a reference for verification. In ESM-based predictions, it is common to
compare the ensemble mean forecast against the reference.

In hindcast ensembles climpred.prediction.compute_hindcast(), this ensemble mean forecast
(comparison='e2r') is expected to perform better than individual ensemble members (comparison='m2r')
as the chaotic component of forecasts is expected to be suppressed by this averaging, while the memory of the sys-
tem sustains. [Boer2016] HindcastEnsemble skill is computed by default as the ensemble mean forecast against the
reference (comparison='e2r').

In perfect-model frameworks climpred.prediction.compute_perfect_model(), there are even more
ways of comparisons. [Seferian2018] shows comparison of the ensemble members against the control run

30 Chapter 2. Installation

https://doi.org/10.1175/1520-0493(1950
https://doi.org/10.1175/1520-0493(1950

climpred

(comparison='m2c') and ensemble members against all other ensemble members (comparison='m2m'). Fur-
thermore, using the ensemble mean forecast can be also verified against one control member (comparison='e2c')
or all members (comparison='m2e') as done in [Griffies1997]. Perfect-model framework comparison defaults to
the ensemble mean forecast verified against each member in turns (comparison='m2e').

These different comparisons demand for a normalization factor to arrive at a normalized skill of 1, when skill saturation
is reached (ref: metrics).

While HindcastEnsemble skill is computed over all initializations init of the hindcast, the resulting skill is a mean
forecast skill over all initializations. PerfectModelEnsemble skill is computed over a supervector comprised of all
initializations and members, which allows the computation of the ACC-based skill [Bushuk2018], but also returns a
mean forecast skill over all initializations. The supervector approach shown in [Bushuk2018] and just calculating a
distance-based metric like rmse over the member dimension as in [Griffies1997] yield very similar results.

2.7.1 HindcastEnsemble

_e2r(ds, reference[, stack_dims]) Compare the ensemble mean forecast to a reference in
HindcastEnsemble.

_m2r(ds, reference[, stack_dims]) Compares each member individually to a reference in
HindcastEnsemble.

2.7.2 PerfectModelEnsemble

_m2e(ds[, supervector_dim, stack_dims]) Create two supervectors to compare all members to en-
semble mean while

_m2c(ds[, supervector_dim, control_member, . . .]) Create two supervectors to compare all members to con-
trol.

_m2m(ds[, supervector_dim, stack_dims]) Create two supervectors to compare all members to all
others in turn.

_e2c(ds[, supervector_dim, control_member, . . .]) Create two supervectors to compare ensemble mean to
control.

2.7.3 References

2.8 Prediction Terminology

Terminology is often confusing and highly variable amongst those that make predictions in the geoscience community.
Here we define some common terms in climate prediction and how we use them in climpred.

2.8.1 Simulation Design

2.8. Prediction Terminology 31

climpred

Initialized Ensemble

Perfect Model Experiment: m ensemble members are initialized from a control simulation at n randomly chosen
initialization dates and integrated for l lead years [Griffies1997] (PerfectModelEnsemble).

Hindcast Ensemble: m ensemble members are initialized from a reference simulation (generally a reconstruction from
reanalysis) at n initialization dates and integrated for l lead years [Boer2016] (HindcastEnsemble).

Uninitialized Ensemble

In this framework, an uninitialized ensemble is one that is generated by perturbing initial conditions only at one point
in the historical run. These are generated via micro (round-off error perturbations) or macro (starting from completely
different restart files) methods. Uninitialized ensembles are used to approximate the magnitude of internal climate
variability and to confidently extract the forced response (ensemble mean) in the climate system.

In climpred, we use uninitialized ensembles as a baseline for how important (reoccurring) initializations are for
lending predictability to the system. Some modeling centers (such as NCAR) provide a dynamical uninitialized
ensemble (the CESM Large Ensemble) along with their initialized prediction system (the CESM Decadal Prediction
Large Ensemble). If this isn’t available, one can approximate the unintiailized response by bootstrapping a control
simulation.

Reconstruction:

Reconstruction/Assimilation: A “reconstruction” is a model solution that uses observations in some capacity to ap-
proximate historical conditions. This could be done via a forced simulation, such as an OMIP run that uses a dynamical
ocean/sea ice core with reanalysis forcing from atmospheric winds. This could also be a fully data assimilative model,
which assimilates observations into the model solution.

2.8.2 Predictability vs. Prediction skill

(Potential) Predictability: This characterizes the “ability to be predicted” rather than the current “ability to predict.”
One acquires this by computing a metric (like the anomaly correlation coefficient (ACC)) between the prediction
ensemble and a verification member (in a perfect-model setup) or the reconstruction that initialized it (in a hindcast
setup) [Meehl2013].

(Prediction) Skill: This characterizes the current ability of the ensemble forecasting system to predict the real
world. This is derived by computing the ACC between the prediction ensemble and observations of the real world
[Meehl2013].

2.8.3 Forecasting

Hindcast: Retrospective forecasts of the past initialized from a reconstruction integrated under external forcing
[Boer2016].

Prediction: Forecasts initialized from a reconstruction integrated into the future with external forcing [Boer2016].

Projection An estimate of the future climate that is dependent on the externally forced climate response, such as
anthropogenic greenhouse gases, aerosols, and volcanic eruptions [Meehl2013].

32 Chapter 2. Installation

climpred

2.8.4 References

2.9 Baseline Forecasts

To quantify the quality of an initialized forecast, it is useful to judge it against some simple baseline forecast.
climpred currently supports a persistence forecast, but future releases will allow computation of other baseline
forecasts. Consider opening a Pull Request to get it implemented more quickly.

Persistence Forecast: Whatever is observed at the time of initialization is forecasted to persist into the forecast period
[Jolliffe2012]. You can compute this via compute_persistence.

Damped Persistence Forecast: (Not Implemented) The amplitudes of the anomalies reduce in time exponentially at
a time scale of the local autocorrelation [Yuan2016].

𝑣𝑑𝑝(𝑡) = 𝑣(0)𝑒−𝛼𝑡

Climatology: (Not Implemented) The average values at the temporal forecast resolution (e.g., annual, monthly) over
some long period, which is usually 30 years [Jolliffe2012].

Random Mechanism: (Not Implemented) A probability distribution is assigned to the possible range of the vari-
able being forecasted, and a sequence of forecasts is produced by taking a sequence of independent values from
that distribution [Jolliffe2012]. This would be similar to computing an uninitialized forecast, using climpred’s
compute_uninitialized function.

2.9.1 References

Help & Reference

• API Reference

• Contribution Guide

• Changelog History

• Release Procedure

• Contributors

2.10 API Reference

This page provides an auto-generated summary of climpred’s API. For more details and examples, refer to the relevant
chapters in the main part of the documentation.

2.10.1 Prediction

compute_hindcast(hind, reference[, metric, . . .]) Compute a predictability skill score against a reference
compute_perfect_model(ds, control[, metric,
. . .])

Compute a predictability skill score for a perfect-model
framework simulation dataset.

compute_persistence(hind, reference[, . . .]) Computes the skill of a persistence forecast from a sim-
ulation.

compute_uninitialized(uninit, reference[, . . .]) Compute a predictability score between an uninitialized
ensemble and a reference.

2.10. API Reference 33

https://climpred.readthedocs.io/en/latest/contributing.html

climpred

compute_hindcast

climpred.prediction.compute_hindcast(hind, reference, metric=’pearson_r’, com-
parison=’e2r’, dim=’init’, max_dof=False,
add_attrs=True, **metric_kwargs)

Compute a predictability skill score against a reference

Parameters

• hind (xarray object) – Expected to follow package conventions: * init : dim of
initialization dates * lead : dim of lead time from those initializations Additional dims can
be member, lat, lon, depth, . . .

• reference (xarray object) – reference output/data over same time period.

• metric (str) – Metric used in comparing the decadal prediction ensemble with the refer-
ence (see climpred.utils.get_metric_function() and Metrics).

• comparison (str) – How to compare the decadal prediction ensemble to the reference:

– e2r : ensemble mean to reference (Default)

– m2r : each member to the reference

(see Comparisons)

• dim (str or list) – dimension to apply metric over. default: ‘init’

• max_dof (bool) – If True, maximize the degrees of freedom by slicing hind and reference
to a common time frame at each lead.

If False (default), then slice to a common time frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.

• add_attrs (bool) – write climpred compute args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns Predictability with main dimension lag without dimension dim

Return type skill (xarray object)

compute_perfect_model

climpred.prediction.compute_perfect_model(ds, control, metric=’pearson_r’, compari-
son=’m2e’, dim=None, add_attrs=True, **met-
ric_kwargs)

Compute a predictability skill score for a perfect-model framework simulation dataset.

Parameters

• ds (xarray object) – ensemble with dims lead, init, member.

• control (xarray object) – control with dimension time.

• metric (str) – metric name, see climpred.utils.get_metric_function()
and (see Metrics).

• comparison (str) – comparison name defines what to take as forecast and verification
(see climpred.utils.get_comparison_function() and Comparisons).

• dim (str or list) – dimension to apply metric over. default: [‘member’, ‘init’]

• add_attrs (bool) – write climpred compute args to attrs. default: True

34 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

climpred

• metric_kwargs (**) – additional keywords to be passed to metric. (see the arguments
required for a given metric in metrics.py)

Returns

skill score with dimensions as input ds without dim.

Return type skill (xarray object)

compute_persistence

climpred.prediction.compute_persistence(hind, reference, metric=’pearson_r’,
max_dof=False, **metric_kwargs)

Computes the skill of a persistence forecast from a simulation.

Parameters

• hind (xarray object) – The initialized ensemble.

• reference (xarray object) – The reference time series.

• metric (str) – Metric name to apply at each lag for the persistence computation. Default:
‘pearson_r’

• max_dof (bool) – If True, maximize the degrees of freedom by slicing hind and reference
to a common time frame at each lead.

If False (default), then slice to a common time frame prior to computing metric. This phi-
losophy follows the thought that each lead should be based on the same set of initializations.

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns Results of persistence forecast with the input metric applied.

Return type pers (xarray object)

Reference:

• Chapter 8 (Short-Term Climate Prediction) in Van den Dool, Huug. Empirical methods in short-term
climate prediction. Oxford University Press, 2007.

compute_uninitialized

climpred.prediction.compute_uninitialized(uninit, reference, metric=’pearson_r’, compari-
son=’e2r’, dim=’time’, add_attrs=True, **met-
ric_kwargs)

Compute a predictability score between an uninitialized ensemble and a reference.

Note: Based on Decadal Prediction protocol, this should only be computed for the first lag and then projected
out to any further lags being analyzed.

Parameters

• uninit (xarray object) – uninitialized ensemble.

• reference (xarray object) – reference output/data over same time period.

• metric (str) – Metric used in comparing the uninitialized ensemble with the reference.

2.10. API Reference 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

climpred

• comparison (str) –

How to compare the uninitialized ensemble to the reference:

– e2r : ensemble mean to reference (Default)

– m2r : each member to the reference

• add_attrs (bool) – write climpred compute args to attrs. default: True

• metric_kwargs (**) – additional keywords to be passed to metric

Returns Results from comparison at the first lag.

Return type u (xarray object)

2.10.2 Bootstrap

bootstrap_compute(hind, reference[, hist, . . .]) Bootstrap compute with replacement.
bootstrap_hindcast(hind, hist, reference[, . . .]) Bootstrap compute with replacement. Wrapper of
bootstrap_perfect_model(ds, control[, . . .]) Bootstrap compute with replacement. Wrapper of
bootstrap_uninit_pm_ensemble_from_control(ds,
. . .)

Create a pseudo-ensemble from control run.

bootstrap_uninitialized_ensemble(hind,
hist)

Resample uninitialized hindcast from historical mem-
bers.

dpp_threshold(control[, sig, bootstrap, dim]) Calc DPP significance levels from re-sampled dataset.
varweighted_mean_period_threshold(control[,
. . .])

Calc the variance-weighted mean period significance
levels from re-sampled dataset.

bootstrap_compute

climpred.bootstrap.bootstrap_compute(hind, reference, hist=None, metric=’pearson_r’,
comparison=’m2e’, dim=’init’, sig=95, boot-
strap=500, pers_sig=None, compute=<function
compute_hindcast>, resample_uninit=<function
bootstrap_uninitialized_ensemble>, **metric_kwargs)

Bootstrap compute with replacement.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• reference (xr.Dataset) – reference simulation.

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘m2e’.

• dim (str or list) – dimension to apply metric over. default: ‘init’

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• bootstrap (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

36 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

climpred

• compute (func) – function to compute skill. Choose from [climpred.prediction.
compute_perfect_model(),

climpred.prediction.compute_hindcast()].

• resample_uninit (func) – function to create an uninitialized ensem-
ble from a control simulation or uninitialized large ensemble. Choose from:
[bootstrap_uninitialized_ensemble(),

bootstrap_uninit_pm_ensemble_from_control()].

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results

• init_ci (xr.Dataset): confidence levels of init_skill

• uninit_ci (xr.Dataset): confidence levels of uninit_skill

• p_uninit_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and uninitialized simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

• pers_ci (xr.Dataset): confidence levels of pers_skill

• p_pers_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and persistence simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_hindcast

• climpred.bootstrap.bootstrap_perfect_model

bootstrap_hindcast

climpred.bootstrap.bootstrap_hindcast(hind, hist, reference, metric=’pearson_r’, com-
parison=’e2r’, dim=’init’, sig=95, bootstrap=500,
pers_sig=None, **metric_kwargs)

Bootstrap compute with replacement. Wrapper of py:func:bootstrap_compute for hindcasts.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• reference (xr.Dataset) – reference simulation.

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

2.10. API Reference 37

https://doi.org/10/f4jjvf
https://docs.python.org/3/library/stdtypes.html#str

climpred

• comparison (str) – comparison. Defaults to ‘e2r’.

• dim (str) – dimension to apply metric over. default: ‘init’

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• bootstrap (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results

• init_ci (xr.Dataset): confidence levels of init_skill

• uninit_ci (xr.Dataset): confidence levels of uninit_skill

• p_uninit_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and uninitialized simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

• pers_ci (xr.Dataset): confidence levels of pers_skill

• p_pers_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and persistence simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_compute

• climpred.prediction.compute_hindcast

bootstrap_perfect_model

climpred.bootstrap.bootstrap_perfect_model(ds, control, metric=’pearson_r’, com-
parison=’m2e’, dim=None, sig=95,
bootstrap=500, pers_sig=None, **met-
ric_kwargs)

Bootstrap compute with replacement. Wrapper of py:func:bootstrap_compute for perfect-model frame-
work.

Parameters

• hind (xr.Dataset) – prediction ensemble.

• reference (xr.Dataset) – reference simulation.

38 Chapter 2. Installation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://doi.org/10/f4jjvf

climpred

• hist (xr.Dataset) – historical/uninitialized simulation.

• metric (str) – metric. Defaults to ‘pearson_r’.

• comparison (str) – comparison. Defaults to ‘m2e’.

• dim (str) – dimension to apply metric over. default: [‘init’, ‘member’]

• sig (int) – Significance level for uninitialized and initialized skill. Defaults to 95.

• pers_sig (int) – Significance level for persistence skill confidence levels. Defaults to
sig.

• bootstrap (int) – number of resampling iterations (bootstrap with replacement). De-
faults to 500.

• metric_kwargs (**) – additional keywords to be passed to metric (see the arguments
required for a given metric in Metrics).

Returns

(xr.Dataset): bootstrapped results

• init_ci (xr.Dataset): confidence levels of init_skill

• uninit_ci (xr.Dataset): confidence levels of uninit_skill

• p_uninit_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and uninitialized simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

• pers_ci (xr.Dataset): confidence levels of pers_skill

• p_pers_over_init (xr.Dataset): p-value of the hypothesis that the difference of skill
between the initialized and persistence simulations is smaller or equal to zero based
on bootstrapping with replacement. Defaults to None.

Return type results

Reference:

• Goddard, L., A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, et al. “A Verification
Framework for Interannual-to-Decadal Predictions Experiments.” Climate Dynamics 40, no. 1–2
(January 1, 2013): 245–72. https://doi.org/10/f4jjvf.

See also:

• climpred.bootstrap.bootstrap_compute

• climpred.prediction.compute_perfect_model

bootstrap_uninit_pm_ensemble_from_control

climpred.bootstrap.bootstrap_uninit_pm_ensemble_from_control(ds, control)
Create a pseudo-ensemble from control run.

Note: Needed for block bootstrapping confidence intervals of a metric in perfect model framework. Takes
randomly segments of length of ensemble dataset from control and rearranges them into ensemble and member
dimensions.

2.10. API Reference 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://doi.org/10/f4jjvf

climpred

Parameters

• ds (xarray object) – ensemble simulation.

• control (xarray object) – control simulation.

Returns pseudo-ensemble generated from control run.

Return type ds_e (xarray object)

bootstrap_uninitialized_ensemble

climpred.bootstrap.bootstrap_uninitialized_ensemble(hind, hist)
Resample uninitialized hindcast from historical members.

Note: Needed for bootstrapping confidence intervals and p_values of a metric in the hindcast framework.
Takes hind.lead.size timesteps from historical at same forcing and rearranges them into ensemble and member
dimensions.

Parameters

• hind (xarray object) – hindcast.

• hist (xarray object) – historical uninitialized.

Returns uninitialize hindcast with hind.coords.

Return type uninit_hind (xarray object)

dpp_threshold

climpred.bootstrap.dpp_threshold(control, sig=95, bootstrap=500, dim=’time’, **dpp_kwargs)
Calc DPP significance levels from re-sampled dataset.

Reference:

• Feng, X., T. DelSole, and P. Houser. “Bootstrap Estimated Seasonal Potential Predictability of Global
Temperature and Precipitation.” Geophysical Research Letters 38, no. 7 (2011). https://doi.org/10/
ft272w.

See also:

• climpred.bootstrap._bootstrap_func

• climpred.stats.dpp

varweighted_mean_period_threshold

climpred.bootstrap.varweighted_mean_period_threshold(control, sig=95, boot-
strap=500, time_dim=’time’)

Calc the variance-weighted mean period significance levels from re-sampled dataset.

See also:

• climpred.bootstrap._bootstrap_func

• climpred.stats.varweighted_mean_period

40 Chapter 2. Installation

https://doi.org/10/ft272w
https://doi.org/10/ft272w

climpred

2.10.3 Statistics

autocorr(ds[, lag, dim, return_p]) Calculate the lagged correlation of time series.
corr(x, y[, dim, lag, return_p]) Computes the Pearson product-moment coefficient of

linear correlation.
decorrelation_time(da[, r, dim]) Calculate the decorrelaton time of a time series.
dpp(ds[, m, chunk]) Calculates the Diagnostic Potential Predictability (dpp)
rm_poly(ds, order[, dim]) Returns xarray object with nth-order fit removed.
rm_trend(da[, dim]) Remove linear trend from time series.
varweighted_mean_period(ds[, time_dim]) Calculate the variance weighted mean period of time se-

ries.

autocorr

climpred.stats.autocorr(ds, lag=1, dim=’time’, return_p=False)
Calculate the lagged correlation of time series.

Parameters

• ds (xarray object) – Time series or grid of time series.

• lag (optional int) – Number of time steps to lag correlate to.

• dim (optional str) – Name of dimension to autocorrelate over.

• return_p (optional bool) – If True, return correlation coefficients and p values.

Returns

Pearson correlation coefficients.

If return_p, also returns their associated p values.

corr

climpred.stats.corr(x, y, dim=’time’, lag=0, return_p=False)
Computes the Pearson product-moment coefficient of linear correlation.

Note: This version calculates the effective degrees of freedom, accounting for autocorrelation within each time
series that could fluff the significance of the correlation.

Parameters

• x (xarray object) – Independent variable time series or grid of time series.

• y (xarray object) – Dependent variable time series or grid of time series

• dim (optional str) – Correlation dimension

• lag (optional int) – Lag to apply to correlaton, with x predicting y.

• return_p (optional bool) – If True, return correlation coefficients as well as p val-
ues.

Returns Pearson correlation coefficients If return_p True, associated p values.

2.10. API Reference 41

climpred

References

• Wilks, Daniel S. Statistical methods in the atmospheric sciences. Vol. 100. Academic press, 2011.

• Lovenduski, Nicole S., and Nicolas Gruber. “Impact of the Southern Annular Mode on Southern Ocean
circulation and biology.” Geophysical Research Letters 32.11 (2005).

decorrelation_time

climpred.stats.decorrelation_time(da, r=20, dim=’time’)
Calculate the decorrelaton time of a time series.

𝜏𝑑 = 1 + 2 *
𝑟∑︁

𝑘=1

(𝛼𝑘)
𝑘

Parameters

• da (xarray object) – Time series.

• r (optional int) – Number of iterations to run the above formula.

• dim (optional str) – Time dimension for xarray object.

Returns Decorrelation time of time series.

Reference:

• Storch, H. v, and Francis W. Zwiers. Statistical Analysis in Climate Research. Cambridge; New York:
Cambridge University Press, 1999., p.373

dpp

climpred.stats.dpp(ds, m=10, chunk=True)
Calculates the Diagnostic Potential Predictability (dpp)

𝐷𝑃𝑃unbiased(𝑚) =
𝜎2
𝑚 − 1

𝑚 · 𝜎2

𝜎2

Note: Resplandy et al. 2015 and Seferian et al. 2018 calculate unbiased DPP in a slightly different way:
chunk=False.

Parameters

• ds (xr.DataArray) – control simulation with time dimension as years.

• m (optional int) – separation time scale in years between predictable low-freq compo-
nent and high-freq noise.

• chunk (optional boolean) – Whether chunking is applied. Default: True. If False,
then uses Resplandy 2015 / Seferian 2018 method.

Returns ds without time dimension.

Return type dpp (xr.DataArray)

42 Chapter 2. Installation

climpred

References

• Boer, G. J. “Long Time-Scale Potential Predictability in an Ensemble of Coupled Climate Models.” Cli-
mate Dynamics 23, no. 1 (August 1, 2004): 29–44. https://doi.org/10/csjjbh.

• Resplandy, L., R. Séférian, and L. Bopp. “Natural Variability of CO2 and O2 Fluxes: What Can We Learn
from Centuries-Long Climate Models Simulations?” Journal of Geophysical Research: Oceans 120, no. 1
(January 2015): 384–404. https://doi.org/10/f63c3h.

• Séférian, Roland, Sarah Berthet, and Matthieu Chevallier. “Assessing the Decadal Predictability of Land
and Ocean Carbon Uptake.” Geophysical Research Letters, March 15, 2018. https://doi.org/10/gdb424.

rm_poly

climpred.stats.rm_poly(ds, order, dim=’time’)
Returns xarray object with nth-order fit removed.

Note: This automatically performs a linear interpolation across any NaNs in the time series.

Parameters

• ds (xarray object) – Time series to be detrended.

• order (int) – Order of polynomial fit to be removed.

• dim (optional str) – Dimension over which to remove the polynomial fit.

Returns xarray object with polynomial fit removed.

rm_trend

climpred.stats.rm_trend(da, dim=’time’)
Remove linear trend from time series.

Parameters

• ds (xarray object) – Time series to be detrended.

• dim (optional str) – Dimension over which to remove the linear trend.

Returns xarray object with linear trend removed.

varweighted_mean_period

climpred.stats.varweighted_mean_period(ds, time_dim=’time’)
Calculate the variance weighted mean period of time series.

𝑃𝑥 =

∑︀
𝑘 𝑉 (𝑓𝑘, 𝑥)∑︀

𝑘 𝑓𝑘 · 𝑉 (𝑓𝑘, 𝑥)

Parameters

• ds (xarray object) – Time series.

• time_dim (optional str) – Name of time dimension.

Reference:

2.10. API Reference 43

https://doi.org/10/csjjbh
https://doi.org/10/f63c3h
https://doi.org/10/gdb424
https://docs.python.org/3/library/functions.html#int

climpred

• Branstator, Grant, and Haiyan Teng. “Two Limits of Initial-Value Decadal Predictability in a CGCM.”
Journal of Climate 23, no. 23 (August 27, 2010): 6292-6311. https://doi.org/10/bwq92h.

2.10.4 Tutorial

load_dataset([name, cache, cache_dir, . . .]) Load example data or a mask from an online repository.

load_dataset

climpred.tutorial.load_dataset(name=None, cache=True, cache_dir=’~/.climpred_data’,
github_url=’https://github.com/bradyrx/climpred-data’,
branch=’master’, extension=None, proxy_dict=None, **kws)

Load example data or a mask from an online repository.

Parameters

• name – (str, default None) Name of the netcdf file containing the dataset, without the .nc
extension. If None, this function prints out the available datasets to import.

• cache_dir – (str, optional) The directory in which to search for and cache the data.

• cache – (bool, optional) If True, cache data locally for use on later calls.

• github_url – (str, optional) Github repository where the data is stored.

• branch – (str, optional) The git branch to download from.

• extension – (str, optional) Subfolder within the repository where the data is stored.

• proxy_dict – (dict, optional) Dictionary with keys as either ‘http’ or ‘https’ and values
as the proxy server. This is useful if you are on a work computer behind a firewall and need
to use a proxy out to download data.

• kws – (dict, optional) Keywords passed to xarray.open_dataset

Returns The desired xarray dataset.

Examples

>>> from climpred.tutorial import load_dataset()
>>> proxy_dict = {'http': '127.0.0.1'}
>>> ds = load_dataset('FOSI-SST', cache=False, proxy_dict=proxy_dict)

2.11 Contribution Guide

Contributions are highly welcomed and appreciated. Every little help counts, so do not hesitate! You can make a high
impact on climpred just by using it and reporting issues.

The following sections cover some general guidelines regarding development in climpred for maintainers and
contributors. Nothing here is set in stone and can’t be changed. Feel free to suggest improvements or changes in the
workflow.

44 Chapter 2. Installation

https://doi.org/10/bwq92h
https://github.com/bradyrx/climpred/issues

climpred

Contribution links

• Contribution Guide

– Feature requests and feedback

– Report bugs

– Fix bugs

– Write documentation

– Preparing Pull Requests

2.11.1 Feature requests and feedback

We are eager to hear about your requests for new features and any suggestions about the API, infrastructure, and so
on. Feel free to submit these as issues with the label “feature request.”

Please make sure to explain in detail how the feature should work and keep the scope as narrow as possible. This will
make it easier to implement in small PRs.

2.11.2 Report bugs

Report bugs for climpred in the issue tracker with the label “bug”.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting, specifically the Python interpreter
version, installed libraries, and climpred version.

• Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should passm that is a very useful commit to make as well,
even if you cannot fix the bug itself.

2.11.3 Fix bugs

Look through the GitHub issues for bugs.

Talk to developers to find out how you can fix specific bugs.

2.11.4 Write documentation

climpred could always use more documentation. What exactly is needed?

• More complementary documentation. Have you perhaps found something unclear?

• Docstrings. There can never be too many of them.

• Example notebooks with different Earth System Models, lead times, etc. – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface, without using a local copy. This can be
convenient for small fixes.

2.11. Contribution Guide 45

https://github.com/bradyrx/climpred/issues/new
https://github.com/bradyrx/climpred/issues
https://github.com/bradyrx/climpred/labels/bug

climpred

Our documentation is written in reStructuredText. You can follow our conventions in already written documents.
Some helpful guides are located here and here.

Note:

Build the documentation locally with the following command:

$ conda env update -f ci/environment-dev-3.6.yml
$ cd docs
$ make html

The built documentation should be available in the docs/build/.

2.11.5 Preparing Pull Requests

1. Fork the climpred GitHub repository. It’s fine to use climpred as your fork repository name because it will
live under your user.

2. Clone your fork locally using git, connect your repository to the upstream (main project), and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/climpred.git
$ cd climpred
$ git remote add upstream git@github.com:bradyrx/climpred.git

now, to fix a bug or add feature create your own branch off "master":

$ git checkout -b your-bugfix-feature-branch-name master

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Install dependencies into a new conda environment:

$ conda env update -f ci/environment-dev-3.7.yml
$ conda activate climpred-dev

4. Make an editable install of climpred by running:

$ pip install -e .

5. Install pre-commit and its hook on the climpred repo:

$ pip install --user pre-commit
$ pre-commit install

Afterwards pre-commit will run whenever you commit.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks to
ensure code-style and code formatting is consistent.

Now you have an environment called climpred-dev that you can work in. You’ll need to make
sure to activate that environment next time you want to use it after closing the terminal or your
system.

You can now edit your local working copy and run/add tests as necessary. Please follow PEP-8 for
naming. When committing, pre-commit will modify the files as needed, or will generally be quite
clear about what you need to do to pass the commit test.

46 Chapter 2. Installation

http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
https://github.com/bradyrx/climpred
https://git-scm.com/
https://git.wiki.kernel.org/index.php/QuickStart
https://pre-commit.com
https://pre-commit.com/

climpred

6. Break your edits up into reasonably sized commits.

$ git commit -a -m “<commit message>” $ git push -u

7. Run all the tests

Now running tests is as simple as issuing this command:

$ coverage run --source climpred -m py.test

This command will run tests via the “pytest” tool against Python 3.6.

8. Create a new changelog entry in CHANGELOG.rst:

• The entry should be entered as:

<description> (:pr:`#<pull request number>`) `<author's names>`_

where <description> is the description of the PR related to the change and <pull request
number> is the pull request number and <author's names> are your first and last names.

• Add yourself to list of authors at the end of CHANGELOG.rst file if not there yet, in alphabetical order.

1. Add yourself to the contributors <https://climpred.readthedocs.io/en/latest/contributors.html>_ list via docs/
source/contributors.rst.

1. Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/climpred
compare: your-branch-name

base-fork: bradyrx/climpred
base: master

Note that you can create the Pull Request while you’re working on this. The PR will update as you add more commits.
climpred developers and contributors can then review your code and offer suggestions.

2.12 Changelog History

2.12.1 climpred v1.1 (2019-09-23)

Features

• Write information about skill computation to netcdf attributes(GH#213) Aaron Spring

• Temporal and spatial smoothing module (GH#224) Aaron Spring

• Add metrics brier_score, threshold_brier_score and crpss_es (GH#232) Aaron Spring

• Allow compute_hindcast and compute_perfect_model to specify which dimension dim to calculate metric over
(GH#232) Aaron Spring

Bug Fixes

• Correct implementation of probabilistic metrics from xskillscore in compute_perfect_model, boot-
strap_perfect_model, compute_hindcast and bootstrap_hindcast, now requires xskillscore>=0.05 (GH#232)
Aaron Spring

2.12. Changelog History 47

https://github.com/bradyrx/climpred/pull/213
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/224
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring

climpred

Internals/Minor Fixes

• Rename .stats.DPP to dpp (GH#232) Aaron Spring

• Add matplotlib as a main dependency so that a direct pip installation works (GH#211) Riley X. Brady.

• climpred is now installable from conda-forge (GH#212) Riley X. Brady.

• Fix erroneous descriptions of sample datasets (GH#226) Riley X. Brady.

• Benchmarking time and peak memory of compute functions with asv (GH#231) Aaron Spring

Documentation

• Add scope of package to docs for clarity for users and developers. (GH#235) Riley X. Brady.

2.12.2 climpred v1.0.1 (2019-07-04)

Bug Fixes

• Accomodate for lead-zero within the lead dimension (GH#196) Riley X. Brady.

• Fix issue with adding uninitialized ensemble to HindcastEnsemble object (GH#199) Riley X. Brady.

• Allow max_dof keyword to be passed to compute_metric and compute_persistence for
HindcastEnsemble (GH#199) Riley X. Brady.

Internals/Minor Fixes

• Force xskillscore version 0.0.4 or higher to avoid ImportError (GH#204) Riley X. Brady.

• Change max_dfs keyword to max_dof (GH#199) Riley X. Brady.

• Add testing for HindcastEnsemble and PerfectModelEnsemble (GH#199) Riley X. Brady

2.12.3 climpred v1.0.0 (2019-07-03)

climpred v1.0.0 represents the first stable release of the package. It includes HindcastEnsemble and
PerfectModelEnsemble objects to perform analysis with. It offers a suite of deterministic and probabilistic met-
rics that are optimized to be run on single time series or grids of data (e.g., lat, lon, and depth). Currently, climpred
only supports annual forecasts.

Features

• Bootstrap prediction skill based on resampling with replacement consistently in ReferenceEnsemble and
PerfectModelEnsemble. (GH#128) Aaron Spring

• Consistent bootstrap function for climpred.stats functions via bootstrap_func wrapper. (GH#167)
Aaron Spring

• many more metrics: _msss_murphy, _less and probabilistic _crps, _crpss (GH#128) Aaron Spring

48 Chapter 2. Installation

https://github.com/bradyrx/climpred/pull/232
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/211
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/212
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/226
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/231
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/235
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/196
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/204
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/199
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/167
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring

climpred

Bug Fixes

• compute_uninitialized now trims input data to the same time window. (GH#193) Riley X. Brady

• rm_poly now properly interpolates/fills NaNs. (GH#192) Riley X. Brady

Internals/Minor Fixes

• The climpred version can be printed. (GH#195) Riley X. Brady

• Constants are made elegant and pushed to a separate module. (GH#184) Andrew Huang

• Checks are consolidated to their own module. (GH#173) Andrew Huang

Documentation

• Documentation built extensively in multiple PRs.

2.12.4 climpred v0.3 (2019-04-27)

climpred v0.3 really represents the entire development phase leading up to the version 1 release. This was done in
collaboration between Riley X. Brady, Aaron Spring, and Andrew Huang. Future releases will have less additions.

Features

• Introduces object-oriented system to climpred, with classes ReferenceEnsemble and
PerfectModelEnsemble. (GH#86) Riley X. Brady

• Expands bootstrapping module for perfect-module configurations. (GH#78, GH#87) Aaron Spring

• Adds functions for computing Relative Entropy (GH#73) Aaron Spring

• Sets more intelligible dimension expectations for climpred (GH#98, GH#105) Riley X. Brady and Aaron
Spring:

– init: initialization dates for the prediction ensemble

– lead: retrospective forecasts from prediction ensemble; returned dimension for prediction calculations

– time: time dimension for control runs, references, etc.

– member: ensemble member dimension.

• Updates open_dataset to display available dataset names when no argument is passed. (GH#123) Riley X.
Brady

• Change ReferenceEnsemble to HindcastEnsemble. (GH#124) Riley X. Brady

• Add probabilistic metrics to climpred. (GH#128) Aaron Spring

• Consolidate separate perfect-model and hindcast functions into singular functions. (GH#128) Aaron Spring

• Add option to pass proxy through to open_dataset for firewalled networks. (GH#138) Riley X. Brady

2.12. Changelog History 49

https://github.com/bradyrx/climpred/pull/193
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/192
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/195
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/184
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/173
https://github.com/ahuang11
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/86
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/78
https://github.com/bradyrx/climpred/pull/87
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/73
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/98
https://github.com/bradyrx/climpred/pull/105
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/123
https://github.com/bradyrx
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/124
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/128
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/138
https://github.com/bradyrx

climpred

Bug Fixes

• xr_rm_poly can now operate on Datasets and with multiple variables. It also interpolates across NaNs in
time series. (GH#94) Andrew Huang

• Travis CI, treon, and pytest all run for automated testing of new features. (GH#98, GH#105, GH#106)
Riley X. Brady and Aaron Spring

• Clean up check_xarray decorators and make sure that they work. (GH#142) Andrew Huang

• Ensures that help() returns proper docstring even with decorators. (GH#149) Andrew Huang

• Fixes bootstrap so p values are correct. (GH#170) Aaron Spring

Internals/Minor Fixes

• Adds unit testing for all perfect-model comparisons. (GH#107) Aaron Spring

• Updates CESM-LE uninitialized ensemble sample data to have 34 members. (GH#113) Riley X. Brady

• Adds MPI-ESM hindcast, historical, and assimilation sample data. (GH#119) Aaron Spring

• Replaces check_xarray with a decorator for checking that input arguments are xarray objects. (GH#120)
Andrew Huang

• Add custom exceptions for clearer error reporting. (GH#139) Riley X. Brady

• Remove “xr” prefix from stats module. (GH#144) Riley X. Brady

• Add codecoverage for testing. (GH#152) Riley X. Brady

• Update exception messages for more pretty error reporting. (GH#156) Andrew Huang

• Add pre-commit and flake8/black check in CI. (GH#163) Riley X. Brady

• Change loadutils module to tutorial and open_dataset to load_dataset. (GH#164) Riley X.
Brady

• Remove predictability horizon function to revisit for v2. (GH#165) Riley X. Brady

• Increase code coverage through more testing. (GH#167) Aaron Spring

• Consolidates checks and constants into modules. (GH#173) Andrew Huang

2.12.5 climpred v0.2 (2019-01-11)

Name changed to climpred, developed enough for basic decadal prediction tasks on a perfect-model ensemble and
reference-based ensemble.

2.12.6 climpred v0.1 (2018-12-20)

Collaboration between Riley Brady and Aaron Spring begins.

2.13 Release Procedure

We follow semantic versioning, e.g., v1.0.0. A major version causes incompatible API changes, a minor version adds
functionality, and a patch covers bug fixes.

50 Chapter 2. Installation

https://github.com/bradyrx/climpred/pull/94
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/98
https://github.com/bradyrx/climpred/pull/105
https://github.com/bradyrx/climpred/pull/106
https://github.com/bradyrx
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/142
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/149
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/170
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/107
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/113
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/119
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/120
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/139
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/144
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/152
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/156
https://github.com/ahuang11
https://github.com/bradyrx/climpred/pull/163
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/164
https://github.com/bradyrx
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/165
https://github.com/bradyrx
https://github.com/bradyrx/climpred/pull/167
https://github.com/aaronspring
https://github.com/bradyrx/climpred/pull/173
https://github.com/ahuang11

climpred

1. Create a new branch release-vX.x.x with the version for the release.

• Update CHANGELOG.rst

• Make sure all new changes, features are reflected in the documentation.

1. Open a new pull request for this branch targeting master

2. After all tests pass and the PR has been approved, merge the PR into master

3. Tag a release and push to github:

$ git tag -a v1.0.0 -m "Version 1.0.0"
$ git push origin master --tags

4. Build and publish release on PyPI:

$ git clean -xfd # remove any files not checked into git
$ python setup.py sdist bdist_wheel --universal # build package
$ twine upload dist/* # register and push to pypi

5. Update climpred conda-forge feedstock

• Fork climpred-feedstock repository

• Clone this fork and edit recipe:

$ git clone git@github.com:username/climpred-feedstock.git
$ cd climpred-feedstock
$ cd recipe
$ # edit meta.yaml

• Update version

• Get sha256 from pypi.org for climpred

• Fill in the rest of information as described here

• Commit and submit a PR

2.14 Contributors

2.14.1 Core Developers

• Riley X. Brady (github)

• Aaron Spring (github)

2.14.2 Contributors

• Andrew Huang (github)

For a list of all the contributions, see the github contribution graph.

2.14. Contributors 51

https://github.com/conda-forge/climpred-feedstock
https://pypi.org/project/climpred/#files
https://github.com/conda-forge/climpred-feedstock#updating-climpred-feedstock
https://github.com/bradyrx/
https://github.com/aaronspring/
https://github.com/ahuang11/
https://github.com/bradyrx/climpred/graphs/contributors

climpred

52 Chapter 2. Installation

Bibliography

[EOS] https://eos.org/opinions/climate-and-other-models-may-be-more-accurate-than-reported

[Jolliffe2011] Ian T. Jolliffe and David B. Stephenson. Forecast Verification: A Practitioner’s Guide in Atmospheric
Science. John Wiley & Sons, Ltd, Chichester, UK, December 2011. ISBN 978-1-119-96000-3 978-0-470-
66071-3. URL: http://doi.wiley.com/10.1002/9781119960003.

[Murphy1988] Allan H. Murphy. Skill Scores Based on the Mean Square Error and Their Relationships to the Correla-
tion Coefficient. Monthly Weather Review, 116(12):2417–2424, December 1988. https://doi.org/10/fc7mxd.

[Boer2016] Boer, G. J., D. M. Smith, C. Cassou, F. Doblas-Reyes, G. Danabasoglu, B. Kirtman, Y. Kushnir, et al.
“The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6.” Geosci. Model Dev. 9, no. 10
(October 25, 2016): 3751–77. https://doi.org/10/f89qdf.

[Bushuk2018] Mitchell Bushuk, Rym Msadek, Michael Winton, Gabriel Vecchi, Xiaosong Yang, Anthony Rosati,
and Rich Gudgel. Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill.
Climate Dynamics, June 2018. https://doi.org/10/gd7hfq.

[Griffies1997] S. M. Griffies and K. Bryan. A predictability study of simulated North Atlantic multidecadal vari-
ability. Climate Dynamics, 13(7-8):459–487, August 1997. https://doi.org/10/ch4kc4.

[Seferian2018] Roland Séférian, Sarah Berthet, and Matthieu Chevallier. Assessing the Decadal Predictability of Land
and Ocean Carbon Uptake. Geophysical Research Letters, March 2018. https://doi.org/10/gdb424.

[Griffies1997] Griffies, S. M., and K. Bryan. “A Predictability Study of Simulated North Atlantic Multidecadal Vari-
ability.” Climate Dynamics 13, no. 7–8 (August 1, 1997): 459–87. https://doi.org/10/ch4kc4

[Boer2016] Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y.,
Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-
Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci.
Model Dev., 9, 3751-3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016.

[Meehl2013] Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., . . . & Karspeck, A.
(2014). Decadal climate prediction: an update from the trenches. Bulletin of the American Meteorological
Society, 95(2), 243-267. https://doi.org/10.1175/BAMS-D-12-00241.1.

[Jolliffe2012] Jolliffe, Ian T., and David B. Stephenson, eds. Forecast verification: a practitioner’s guide in atmo-
spheric science. John Wiley & Sons, 2012.

[Yuan2016] Yuan, Xiaojun, et al. “Arctic sea ice seasonal prediction by a linear Markov model.” Journal of Climate
29.22 (2016): 8151-8173.

53

https://eos.org/opinions/climate-and-other-models-may-be-more-accurate-than-reported
http://doi.wiley.com/10.1002/9781119960003
https://doi.org/10/fc7mxd
https://doi.org/10/f89qdf
https://doi.org/10/gd7hfq
https://doi.org/10/ch4kc4
https://doi.org/10/gdb424
https://doi.org/10/ch4kc4
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.1175/BAMS-D-12-00241.1

climpred

54 Bibliography

Index

Symbols
_bias() (in module climpred.metrics), 26
_bias_slope() (in module climpred.metrics), 26
_brier_score() (in module climpred.metrics), 29
_conditional_bias() (in module

climpred.metrics), 27
_crps() (in module climpred.metrics), 27
_crpss() (in module climpred.metrics), 28
_crpss_es() (in module climpred.metrics), 28
_mae() (in module climpred.metrics), 22
_mse() (in module climpred.metrics), 21
_msss_murphy() (in module climpred.metrics), 27
_nmae() (in module climpred.metrics), 23
_nmse() (in module climpred.metrics), 23
_nrmse() (in module climpred.metrics), 24
_pearson_r() (in module climpred.metrics), 21
_ppp() (in module climpred.metrics), 24
_rmse() (in module climpred.metrics), 22
_std_ratio() (in module climpred.metrics), 26
_threshold_brier_score() (in module

climpred.metrics), 29
_uacc() (in module climpred.metrics), 25

A
autocorr() (in module climpred.stats), 41

B
bootstrap_compute() (in module

climpred.bootstrap), 36
bootstrap_hindcast() (in module

climpred.bootstrap), 37
bootstrap_perfect_model() (in module

climpred.bootstrap), 38
bootstrap_uninit_pm_ensemble_from_control()

(in module climpred.bootstrap), 39
bootstrap_uninitialized_ensemble() (in

module climpred.bootstrap), 40

C
compute_hindcast() (in module

climpred.prediction), 34
compute_perfect_model() (in module

climpred.prediction), 34
compute_persistence() (in module

climpred.prediction), 35
compute_uninitialized() (in module

climpred.prediction), 35
corr() (in module climpred.stats), 41

D
decorrelation_time() (in module climpred.stats),

42
dpp() (in module climpred.stats), 42
dpp_threshold() (in module climpred.bootstrap),

40

L
load_dataset() (in module climpred.tutorial), 44

R
rm_poly() (in module climpred.stats), 43
rm_trend() (in module climpred.stats), 43

V
varweighted_mean_period() (in module

climpred.stats), 43
varweighted_mean_period_threshold() (in

module climpred.bootstrap), 40

55

	Version 1 Release
	Installation
	Bibliography
	Index

